Abstract

A Na double-edge magneto-optic filter is proposed for incorporation into the receiver of a three-frequency Na Doppler lidar to extend its wind and temperature measurements into the lower atmosphere. Two prototypes based on cold- and hot-cell designs were constructed and tested with laser scanning and quantum mechanics modeling. The hot-cell filter exhibits superior performances over the cold-cell filter containing buffer gas. Lidar simulations, metrics, and error analyses show that simultaneous wind and temperature measurements are feasible in the altitude range of 2050km using the hot-cell filter and reasonable Na lidar parameters.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Chu and G. C. Papen, Laser Remote Sensing, T.Fujii and T.Fukuchi, eds. (CRC, 2005), pp. 179-432.
  2. C. L. Korb, B. M. Gentry, and C. Y. Weng, Appl. Opt. 31, 4202 (1992).
    [CrossRef] [PubMed]
  3. M. L. Chanin, A. Hauchecorne, A. Garnier, and D. Nedeljkovic, J. Atmos. Terr. Phys. 56, 1073 (1994).
    [CrossRef]
  4. C. Flesia and C. L. Korb, Appl. Opt. 38, 432 (1999).
    [CrossRef]
  5. C. Y. She, J. Yue, Z. Yan, J. W. Hair, J. Guo, S. Wu, and Z. Liu, Appl. Opt. 46, 4434 (2007).
    [CrossRef] [PubMed]
  6. G. Agnelli, A. Cacciani, and M. Fofi, Sol. Phys. 44, 509 (1975).
    [CrossRef]
  7. B. P. Williams, and S. Tomczyk, Appl. Opt. 35, 6494 (1996).
    [CrossRef] [PubMed]
  8. H. Chen, C. Y. She, P. Searcy, and E. Korevaar, Opt. Lett. 18, 1019 (1993).
    [CrossRef] [PubMed]
  9. S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters re-visited: Theory and applications,” (submitted to J. Opt. Soc. Am. B).
  10. G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

2007

1999

1996

1994

M. L. Chanin, A. Hauchecorne, A. Garnier, and D. Nedeljkovic, J. Atmos. Terr. Phys. 56, 1073 (1994).
[CrossRef]

1993

1992

1975

G. Agnelli, A. Cacciani, and M. Fofi, Sol. Phys. 44, 509 (1975).
[CrossRef]

1974

G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

Agnelli, G.

G. Agnelli, A. Cacciani, and M. Fofi, Sol. Phys. 44, 509 (1975).
[CrossRef]

Boley, C. D.

G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

Cacciani, A.

G. Agnelli, A. Cacciani, and M. Fofi, Sol. Phys. 44, 509 (1975).
[CrossRef]

Chanin, M. L.

M. L. Chanin, A. Hauchecorne, A. Garnier, and D. Nedeljkovic, J. Atmos. Terr. Phys. 56, 1073 (1994).
[CrossRef]

Chen, H.

H. Chen, C. Y. She, P. Searcy, and E. Korevaar, Opt. Lett. 18, 1019 (1993).
[CrossRef] [PubMed]

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters re-visited: Theory and applications,” (submitted to J. Opt. Soc. Am. B).

Chen, S. S.

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters re-visited: Theory and applications,” (submitted to J. Opt. Soc. Am. B).

Chu, X.

X. Chu and G. C. Papen, Laser Remote Sensing, T.Fujii and T.Fukuchi, eds. (CRC, 2005), pp. 179-432.

Desai, R. C.

G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

Flesia, C.

Fofi, M.

G. Agnelli, A. Cacciani, and M. Fofi, Sol. Phys. 44, 509 (1975).
[CrossRef]

Garnier, A.

M. L. Chanin, A. Hauchecorne, A. Garnier, and D. Nedeljkovic, J. Atmos. Terr. Phys. 56, 1073 (1994).
[CrossRef]

Gentry, B. M.

Guo, J.

Hair, J. W.

Harrell, S. D.

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters re-visited: Theory and applications,” (submitted to J. Opt. Soc. Am. B).

Hauchecorne, A.

M. L. Chanin, A. Hauchecorne, A. Garnier, and D. Nedeljkovic, J. Atmos. Terr. Phys. 56, 1073 (1994).
[CrossRef]

Hu, Z. L.

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters re-visited: Theory and applications,” (submitted to J. Opt. Soc. Am. B).

Korb, C. L.

Korevaar, E.

Krueger, D. A.

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters re-visited: Theory and applications,” (submitted to J. Opt. Soc. Am. B).

Liu, Z.

Nedeljkovic, D.

M. L. Chanin, A. Hauchecorne, A. Garnier, and D. Nedeljkovic, J. Atmos. Terr. Phys. 56, 1073 (1994).
[CrossRef]

Papen, G. C.

X. Chu and G. C. Papen, Laser Remote Sensing, T.Fujii and T.Fukuchi, eds. (CRC, 2005), pp. 179-432.

Searcy, P.

She, C. Y.

She, C.-Y.

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters re-visited: Theory and applications,” (submitted to J. Opt. Soc. Am. B).

Tenti, G.

G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

Tomczyk, S.

Weng, C. Y.

Williams, B. P.

Wu, S.

Yan, Z.

Yuan, T.

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters re-visited: Theory and applications,” (submitted to J. Opt. Soc. Am. B).

Yue, J.

Appl. Opt.

Can. J. Phys.

G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

J. Atmos. Terr. Phys.

M. L. Chanin, A. Hauchecorne, A. Garnier, and D. Nedeljkovic, J. Atmos. Terr. Phys. 56, 1073 (1994).
[CrossRef]

Opt. Lett.

Sol. Phys.

G. Agnelli, A. Cacciani, and M. Fofi, Sol. Phys. 44, 509 (1975).
[CrossRef]

Other

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters re-visited: Theory and applications,” (submitted to J. Opt. Soc. Am. B).

X. Chu and G. C. Papen, Laser Remote Sensing, T.Fujii and T.Fukuchi, eds. (CRC, 2005), pp. 179-432.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Na-DEMOF setup. (b) Measured left-channel (dashed curve) and right-channel (dotted–dashed curve) edge filter functions. Solid curves represent simulated atmospheric returns from the Na lidar three frequencies (left panel) and filter output (middle and right panels).

Fig. 2
Fig. 2

Measured filter functions at different temperatures: the reservoir temperatures for the cold-cell and the window temperatures for the hot-cell. The dashed curves in (b) are QM simulated hot-cell filter functions at 160 ° C and 1350 G .

Fig. 3
Fig. 3

LOS wind and temperature calibration curves.

Fig. 4
Fig. 4

Simulated measurement uncertainties due to photon noise using the hot-cell filter functions at 160 ° C .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R W ( V LOS , T ) = N R + N L + N R + + N L + ,
R T ( V LOS , T ) = N L N R ,
( Δ V LOS ) rms = 1 R W V LOS ( 1 + R W ) ( 1 R W ) 2 SNR R + ,
( Δ T ) rms = 1 R T T ( 1 + R T ) R T SNR R ,

Metrics