Abstract

The thermal strain in a laser rod with a longitudinal temperature increase is modeled and analytically derived through the method of thermoelastic displacement potential and the method of Love displacement function. The analytical results show that in the absence of external forces, the longitudinal rise of fluid temperature has an unnoticeable effect on the thermal stress profile in the laser rod. However, the thermal strain field caused by the temperature distribution under the traction free boundary condition has an evident variation in the longitudinal direction, which will considerably affect the laser transmission characteristics and the beam quality.

© 2009 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription