Abstract

A phase-object (PO) Z-scan technique, which can conveniently distinguish the transient thermal-lensing effect from the third-order nonlinear refraction, is described. The PO Z-scan trace of the transient thermal-lensing effect shows a valley–peak shape that is very different from the single-valley (peak) shape of the pure negative (positive) third-order nonlinearity. The nonlinear refraction of the C70/toluene solution is investigated by using the PO Z scan with 8ns pulses at 532nm wavelength as a test.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sheik-Bahae, A. A. Said, and E. W. van Stryland, Opt. Lett. 14, 955 (1989).
    [CrossRef] [PubMed]
  2. W. Zhao and P. Palffy-Muhoray, Appl. Phys. Lett. 63, 1613 (1993).
    [CrossRef]
  3. T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. van Stryland, Opt. Lett. 19, 317 (1994).
    [CrossRef] [PubMed]
  4. J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. Yoo, A. Mott, M. Namkung, and S. S. Jung, Appl. Phys. Lett. 82, 4444 (2003).
    [CrossRef]
  5. G. Boudebs and S. Cherukulappurath, Phys. Rev. A 69, 053813 (2004).
    [CrossRef]
  6. G. Boudebs and S. Cherukulappurath, Opt. Commun. 250, 416 (2005).
    [CrossRef]
  7. D. I. Kovsh, D. J. Hagan, and E. W. van Stryland, Opt. Express 4, 315 (1999).
    [CrossRef] [PubMed]
  8. P. Brochard, V. Grolier-Mazza, and R. Cabanel, J. Opt. Soc. Am. B 14, 405 (1997).
    [CrossRef]

2005 (1)

G. Boudebs and S. Cherukulappurath, Opt. Commun. 250, 416 (2005).
[CrossRef]

2004 (1)

G. Boudebs and S. Cherukulappurath, Phys. Rev. A 69, 053813 (2004).
[CrossRef]

2003 (1)

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. Yoo, A. Mott, M. Namkung, and S. S. Jung, Appl. Phys. Lett. 82, 4444 (2003).
[CrossRef]

1999 (1)

1997 (1)

1994 (1)

1993 (1)

W. Zhao and P. Palffy-Muhoray, Appl. Phys. Lett. 63, 1613 (1993).
[CrossRef]

1989 (1)

Boudebs, G.

G. Boudebs and S. Cherukulappurath, Opt. Commun. 250, 416 (2005).
[CrossRef]

G. Boudebs and S. Cherukulappurath, Phys. Rev. A 69, 053813 (2004).
[CrossRef]

Brochard, P.

Cabanel, R.

Cherukulappurath, S.

G. Boudebs and S. Cherukulappurath, Opt. Commun. 250, 416 (2005).
[CrossRef]

G. Boudebs and S. Cherukulappurath, Phys. Rev. A 69, 053813 (2004).
[CrossRef]

Creekmore, S.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. Yoo, A. Mott, M. Namkung, and S. S. Jung, Appl. Phys. Lett. 82, 4444 (2003).
[CrossRef]

Grolier-Mazza, V.

Hagan, D. J.

Jung, S. S.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. Yoo, A. Mott, M. Namkung, and S. S. Jung, Appl. Phys. Lett. 82, 4444 (2003).
[CrossRef]

Kim, S. Y.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. Yoo, A. Mott, M. Namkung, and S. S. Jung, Appl. Phys. Lett. 82, 4444 (2003).
[CrossRef]

Kovsh, D. I.

Mott, A.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. Yoo, A. Mott, M. Namkung, and S. S. Jung, Appl. Phys. Lett. 82, 4444 (2003).
[CrossRef]

Namkung, M.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. Yoo, A. Mott, M. Namkung, and S. S. Jung, Appl. Phys. Lett. 82, 4444 (2003).
[CrossRef]

Palffy-Muhoray, P.

W. Zhao and P. Palffy-Muhoray, Appl. Phys. Lett. 63, 1613 (1993).
[CrossRef]

Said, A. A.

Seo, J. T.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. Yoo, A. Mott, M. Namkung, and S. S. Jung, Appl. Phys. Lett. 82, 4444 (2003).
[CrossRef]

Sheik-Bahae, M.

Tabibi, B.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. Yoo, A. Mott, M. Namkung, and S. S. Jung, Appl. Phys. Lett. 82, 4444 (2003).
[CrossRef]

Temple, D.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. Yoo, A. Mott, M. Namkung, and S. S. Jung, Appl. Phys. Lett. 82, 4444 (2003).
[CrossRef]

van Stryland, E. W.

Xia, T.

Yang, Q.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. Yoo, A. Mott, M. Namkung, and S. S. Jung, Appl. Phys. Lett. 82, 4444 (2003).
[CrossRef]

Yoo, K.

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. Yoo, A. Mott, M. Namkung, and S. S. Jung, Appl. Phys. Lett. 82, 4444 (2003).
[CrossRef]

Zhao, W.

W. Zhao and P. Palffy-Muhoray, Appl. Phys. Lett. 63, 1613 (1993).
[CrossRef]

Appl. Phys. Lett. (2)

J. T. Seo, Q. Yang, S. Creekmore, B. Tabibi, D. Temple, S. Y. Kim, K. Yoo, A. Mott, M. Namkung, and S. S. Jung, Appl. Phys. Lett. 82, 4444 (2003).
[CrossRef]

W. Zhao and P. Palffy-Muhoray, Appl. Phys. Lett. 63, 1613 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

G. Boudebs and S. Cherukulappurath, Opt. Commun. 250, 416 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

G. Boudebs and S. Cherukulappurath, Phys. Rev. A 69, 053813 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the PO Z-scan system: PO, phase object; L, lenses; BS, beam splitters. (b) Schematic of the phase object at the entry of the PO Z-scan system. The inner circular region is the uniform phase-shift area by depositing Si O 2 on the glass plate at a certain thickness.

Fig. 2
Fig. 2

(a) Theoretical PO Z-scan traces for the pure third-order effect. The inset is the experimental PO Z-scan traces for toluene and ZnSe.

Fig. 3
Fig. 3

Theoretical PO Z-scan traces for the various γ when the electronic effect and the thermal-lensing effect coexist in the nonlinear materials.

Fig. 4
Fig. 4

Experimental PO Z-scan traces for the C 70 /toluene solution. The inset is the result of the open-aperture Z scan. The solid curve is the theoretical fit to the experimental result.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ( r , t ) = E 0 exp [ r 2 ω e 2 ] exp [ t 2 τ 2 2 ] ,
d ϕ d z = k Δ n .
Δ n = γ I ,
2 Δ n t h ( r , z , t ) t 2 v s 2 2 ( Δ n th ( r , z , t ) ) = ( d n d T ) v s 2 2 ( Δ T ( r , z , t ) ) ,
Δ n = γ I + Δ n t h .

Metrics