Abstract

We describe a means for controlling the spin angular-momentum flux of a laser beam at constant power, without introducing any elliptical or linear polarization. This allows a controllable torque, acting to spin the particle uniformly, to be exerted on a birefringent particle in optical tweezers. The constant power means that transverse and axial trapping, and heating due to absorption, are unaffected by changing the torque. The torque can be computer controlled and rapidly changed. In addition, the lateral trapping is kept constant. Very low torques can be obtained such that rotational Brownian motion of birefringent particles can be observed. This has the potential to greatly extend the quantitative applications of the rotation of birefringent objects in optical tweezers.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef] [PubMed]
  2. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, Annu. Rev. Biochem. 77, 205 (2008).
    [CrossRef] [PubMed]
  3. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Nature 394, 348 (1998).
    [CrossRef]
  4. D. G. Grier, Nature 424, 810 (2003).
    [CrossRef] [PubMed]
  5. M. Padgett, J. Courtial, and L. Allen, Phys. Today 57, 35 (2004).
    [CrossRef]
  6. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 92, 198104 (2004).
    [CrossRef] [PubMed]
  7. C. Deufel, S. Forth, C. R. Simmons, S. Dejgosha, and M. D. Wang, Nat. Methods 4, 223 (2007).
    [CrossRef] [PubMed]
  8. S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. E 76, 041507 (2007).
    [CrossRef]
  9. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Mod. Opt. 48, 405 (2001).
  10. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. A 68, 033802 (2003).
    [CrossRef]
  11. A. La Porta and M. D. Wang, Phys. Rev. Lett. 92, 190801 (2004).
    [CrossRef] [PubMed]
  12. T. A. Wood, G. S. Roberts, S. Eaimkhong, and P. Bartlett, Faraday Discuss. 137, 319 (2008).
    [CrossRef] [PubMed]

2008 (2)

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, Annu. Rev. Biochem. 77, 205 (2008).
[CrossRef] [PubMed]

T. A. Wood, G. S. Roberts, S. Eaimkhong, and P. Bartlett, Faraday Discuss. 137, 319 (2008).
[CrossRef] [PubMed]

2007 (2)

C. Deufel, S. Forth, C. R. Simmons, S. Dejgosha, and M. D. Wang, Nat. Methods 4, 223 (2007).
[CrossRef] [PubMed]

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. E 76, 041507 (2007).
[CrossRef]

2004 (3)

M. Padgett, J. Courtial, and L. Allen, Phys. Today 57, 35 (2004).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

A. La Porta and M. D. Wang, Phys. Rev. Lett. 92, 190801 (2004).
[CrossRef] [PubMed]

2003 (2)

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. A 68, 033802 (2003).
[CrossRef]

2001 (1)

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Mod. Opt. 48, 405 (2001).

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Nature 394, 348 (1998).
[CrossRef]

1986 (1)

Allen, L.

M. Padgett, J. Courtial, and L. Allen, Phys. Today 57, 35 (2004).
[CrossRef]

Ashkin, A.

Bartlett, P.

T. A. Wood, G. S. Roberts, S. Eaimkhong, and P. Bartlett, Faraday Discuss. 137, 319 (2008).
[CrossRef] [PubMed]

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. A 68, 033802 (2003).
[CrossRef]

Bjorkholm, J. E.

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, Annu. Rev. Biochem. 77, 205 (2008).
[CrossRef] [PubMed]

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, Annu. Rev. Biochem. 77, 205 (2008).
[CrossRef] [PubMed]

Chu, S.

Courtial, J.

M. Padgett, J. Courtial, and L. Allen, Phys. Today 57, 35 (2004).
[CrossRef]

Dejgosha, S.

C. Deufel, S. Forth, C. R. Simmons, S. Dejgosha, and M. D. Wang, Nat. Methods 4, 223 (2007).
[CrossRef] [PubMed]

Deufel, C.

C. Deufel, S. Forth, C. R. Simmons, S. Dejgosha, and M. D. Wang, Nat. Methods 4, 223 (2007).
[CrossRef] [PubMed]

Dziedzic, J. M.

Eaimkhong, S.

T. A. Wood, G. S. Roberts, S. Eaimkhong, and P. Bartlett, Faraday Discuss. 137, 319 (2008).
[CrossRef] [PubMed]

Forth, S.

C. Deufel, S. Forth, C. R. Simmons, S. Dejgosha, and M. D. Wang, Nat. Methods 4, 223 (2007).
[CrossRef] [PubMed]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Nature 394, 348 (1998).
[CrossRef]

Grier, D. G.

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

Heckenberg, N. R.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. E 76, 041507 (2007).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. A 68, 033802 (2003).
[CrossRef]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Mod. Opt. 48, 405 (2001).

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Nature 394, 348 (1998).
[CrossRef]

Knöner, G.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. E 76, 041507 (2007).
[CrossRef]

La Porta, A.

A. La Porta and M. D. Wang, Phys. Rev. Lett. 92, 190801 (2004).
[CrossRef] [PubMed]

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, Annu. Rev. Biochem. 77, 205 (2008).
[CrossRef] [PubMed]

Nieminen, T. A.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. E 76, 041507 (2007).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. A 68, 033802 (2003).
[CrossRef]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Mod. Opt. 48, 405 (2001).

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Nature 394, 348 (1998).
[CrossRef]

Padgett, M.

M. Padgett, J. Courtial, and L. Allen, Phys. Today 57, 35 (2004).
[CrossRef]

Parkin, S. J.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. E 76, 041507 (2007).
[CrossRef]

Roberts, G. S.

T. A. Wood, G. S. Roberts, S. Eaimkhong, and P. Bartlett, Faraday Discuss. 137, 319 (2008).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. E 76, 041507 (2007).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. A 68, 033802 (2003).
[CrossRef]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Mod. Opt. 48, 405 (2001).

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Nature 394, 348 (1998).
[CrossRef]

Simmons, C. R.

C. Deufel, S. Forth, C. R. Simmons, S. Dejgosha, and M. D. Wang, Nat. Methods 4, 223 (2007).
[CrossRef] [PubMed]

Smith, S. B.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, Annu. Rev. Biochem. 77, 205 (2008).
[CrossRef] [PubMed]

Wang, M. D.

C. Deufel, S. Forth, C. R. Simmons, S. Dejgosha, and M. D. Wang, Nat. Methods 4, 223 (2007).
[CrossRef] [PubMed]

A. La Porta and M. D. Wang, Phys. Rev. Lett. 92, 190801 (2004).
[CrossRef] [PubMed]

Wood, T. A.

T. A. Wood, G. S. Roberts, S. Eaimkhong, and P. Bartlett, Faraday Discuss. 137, 319 (2008).
[CrossRef] [PubMed]

Annu. Rev. Biochem. (1)

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, Annu. Rev. Biochem. 77, 205 (2008).
[CrossRef] [PubMed]

Faraday Discuss. (1)

T. A. Wood, G. S. Roberts, S. Eaimkhong, and P. Bartlett, Faraday Discuss. 137, 319 (2008).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Mod. Opt. 48, 405 (2001).

Nat. Methods (1)

C. Deufel, S. Forth, C. R. Simmons, S. Dejgosha, and M. D. Wang, Nat. Methods 4, 223 (2007).
[CrossRef] [PubMed]

Nature (2)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Nature 394, 348 (1998).
[CrossRef]

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (1)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. A 68, 033802 (2003).
[CrossRef]

Phys. Rev. E (1)

S. J. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. E 76, 041507 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 92, 198104 (2004).
[CrossRef] [PubMed]

A. La Porta and M. D. Wang, Phys. Rev. Lett. 92, 190801 (2004).
[CrossRef] [PubMed]

Phys. Today (1)

M. Padgett, J. Courtial, and L. Allen, Phys. Today 57, 35 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Setup for controllable-torque optical tweezers using two beams of opposite circular polarization with power controlled by two AOMs. A λ 4 plate and polarizing beam splitter (A) are used to divide the trapping beam into two paths. In each path, an AOM (B) is used to both shift the frequency and control the power of the beams. Two λ 2 plates and another polarizing beam splitter (C) are then used to recombine the beams, with orthogonal linear polarizations. A dichroic mirror (D) then deflects the combined trapping beams though a λ 4 plate, which converts them to oppositely circularly polarized beams. The beams are then focused into the trap, and the forward scattered light is collected by the condenser and then deflected by a second dichroic mirror (E) into a torque detector. A circularly polarized 633 nm beam is used to observe (G) the orientation of the particle.

Fig. 2
Fig. 2

Ideal signal from angle detector.

Fig. 3
Fig. 3

Mean squared angular displacement for rotational Brownian motion, averaged over 465 trajectories. The solid straight line is the line of best fit, and the dotted lines are the expected error limits due to sampling.

Metrics