Abstract

We show that trapping of dispersive waves by solitons is significantly enhanced in tapered optical fibers as compared with nontapered fibers. For the trapping process to occur, the soliton must be decelerating; in nontapered fiber, the cause of soliton deceleration is Raman self-scattering to spectral regions of lower group velocity. It is shown here that deceleration of the soliton due to the changing group velocities in a tapered optical fiber also enables and enhances the trapping process, independently of Raman gain. This explains the enhanced blue spectral extension observed for supercontinuum generation in tapered optical fibers. This result also indicates that trapping of dispersive waves by solitons will also be possible in fibers or waveguides made from materials with negligible Raman self-scattering.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Gorbach and D. V. Skryabin, Phys. Rev. A 76, 053803 (2007).
    [CrossRef]
  2. J. M. Stone and J. C. Knight, Opt. Express 16, 2670 (2008).
    [CrossRef] [PubMed]
  3. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, Opt. Express 16, 14435 (2008).
    [CrossRef] [PubMed]
  4. J. C. Travers, S. V. Popov, and J. R. Taylor, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThGG2.
  5. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, Opt. Express 14, 5715 (2006).
    [CrossRef] [PubMed]
  6. A. V. Gorbach and D. V. Skryabin, Nat. Photonics 1, 653 (2007).
    [CrossRef]
  7. P. Beaud, W. Hodel, B. Zysset, and H. Weber, IEEE J. Quantum Electron. 23, 1938 (1987).
    [CrossRef]
  8. J. Lægsgaard, Opt. Express 15, 16110 (2007).
    [CrossRef] [PubMed]
  9. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).
    [CrossRef] [PubMed]
  10. V. P. Tzolov, M. Fontaine, N. Godbout, and S. Lacroix, Opt. Lett. 20, 456 (1995).
    [CrossRef] [PubMed]
  11. J. Hult, J. Lightwave Technol. 25, 3770 (2007).
    [CrossRef]
  12. A. Kudlinski and A. Mussot, Opt. Lett. 33, 2407 (2008).
    [CrossRef] [PubMed]

2008 (3)

2007 (4)

A. V. Gorbach and D. V. Skryabin, Nat. Photonics 1, 653 (2007).
[CrossRef]

J. Lægsgaard, Opt. Express 15, 16110 (2007).
[CrossRef] [PubMed]

A. V. Gorbach and D. V. Skryabin, Phys. Rev. A 76, 053803 (2007).
[CrossRef]

J. Hult, J. Lightwave Technol. 25, 3770 (2007).
[CrossRef]

2006 (1)

2001 (1)

1995 (1)

1987 (1)

P. Beaud, W. Hodel, B. Zysset, and H. Weber, IEEE J. Quantum Electron. 23, 1938 (1987).
[CrossRef]

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, IEEE J. Quantum Electron. 23, 1938 (1987).
[CrossRef]

Cumberland, B. A.

Fontaine, M.

George, A. K.

Godbout, N.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, Nat. Photonics 1, 653 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, Phys. Rev. A 76, 053803 (2007).
[CrossRef]

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, IEEE J. Quantum Electron. 23, 1938 (1987).
[CrossRef]

Hult, J.

Joannopoulos, J. D.

Johnson, S. G.

Knight, J. C.

Kudlinski, A.

Lacroix, S.

Lægsgaard, J.

Mussot, A.

Popov, S. V.

Rulkov, A. B.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, Nat. Photonics 1, 653 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, Phys. Rev. A 76, 053803 (2007).
[CrossRef]

Stone, J. M.

Taylor, J. R.

Travers, J. C.

Tzolov, V. P.

Weber, H.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, IEEE J. Quantum Electron. 23, 1938 (1987).
[CrossRef]

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, IEEE J. Quantum Electron. 23, 1938 (1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Dispersion, (b) group velocity, and (c) group-velocity-matched (GVM) wavelength, curves with respect to wavelength, at the following distances through the taper: 0.0 m (solid, black), 0.25 m (solid, gray), 0.5 m (dashed, black), 0.75 m (dashed, gray), 1.0 m (dotted, black); corresponding to pitches of 4.5, 3.88, 3.25, 2.62, and 2.0 μ m . The nontapered fiber studied has the properties of the 4.5 μ m pitch curves (solid, black).

Fig. 2
Fig. 2

Spectral evolution of an input 10 fs soliton at 1.3 μ m and group-velocity-matched dispersive wave through (a) the nontapered fiber without Raman, (b) the nontapered fiber with Raman, (c) the tapered fiber without Raman, and (d) the tapered fiber with Raman.

Fig. 3
Fig. 3

(a) Group velocity and (b) GVM wavelength, curves with respect to distance through the taper, for solitons at the following wavelengths (top to bottom): 1.3 μ m (solid, black), 1.4 μ m (solid, gray), 1.5 μ m (dashed, black), 1.6 μ m (dashed, gray), 1.7 μ m (dotted, black).

Fig. 4
Fig. 4

Spectrograms of the soliton and dispersive wave after 0.8 m of propagation through (a) the nontapered fiber without Raman, (b) the nontapered fiber with Raman, (c) the tapered fiber without Raman, and (d) the tapered fiber with Raman.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z E ( z , ω ) = i ( β ( z , ω ) β ( z , ω 0 ) ω β ( z , ω ) ω 0 Ω ) E ( z , ω ) i n 2 ω c A eff ( 1 4 ) ( z , ω ) d ω 1 E ¯ ( z , ω 1 ) R ( ω 1 ω ) × d ω 2 E ¯ ( z , ω 1 ω 2 ω ) E ¯ ( z , ω 2 ) ,
E ¯ ( z , ω ) = E ( z , ω ) A eff ( 1 4 ) ( z , ω ) .

Metrics