Abstract

Scattering of illumination light from a laser is a severe problem especially when imaging in thick media. Although this effect occurs in nearly every imaging process, it can be well perceived and analyzed in configurations where the optical axes for illumination and detection are perpendicular to each other. In this paper I present a theoretical perspective of how to extend the point-spread function arithmetic from ideal imaging to realistic imaging including ghost images. These ghost images are generated by scattered light and are low-correlated with the ideal image. Numerical simulations of the propagation of four different types of illumination beams through a cluster of spheres illustrate the effects of inhomogeneous object illumination. Clear differences between a conventional plane-wave illumination, a static light-sheet, and a laterally scanned Gaussian beam, but also relative to a scanned Bessel beam, can be observed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, Science 305, 1007 (2004).
    [CrossRef] [PubMed]
  2. A. Abbott, Nature 424, 870 (2003).
    [CrossRef] [PubMed]
  3. A. H. Voie, D. H. Burns, and F. A. Spelman, J. Microsc-Oxford 170, 229 (1993).
    [CrossRef]
  4. A. Rohrbach, Biophys. J. 78, 2641 (2000).
    [CrossRef] [PubMed]
  5. J. Huisken and D. Y. R. Stainier, Opt. Lett. 32, 2608 (2007).
    [CrossRef] [PubMed]
  6. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, Science 322, 1065 (2008).
    [CrossRef] [PubMed]
  7. N. Streibl, J. Opt. Soc. Am. A 2, 121 (1985).
    [CrossRef]
  8. M. D. Feit and J. A. Fleck, Appl. Opt. 17, 3990 (1978).
    [CrossRef] [PubMed]
  9. D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).
    [CrossRef]

2008

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, Science 322, 1065 (2008).
[CrossRef] [PubMed]

2007

2005

D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).
[CrossRef]

2004

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, Science 305, 1007 (2004).
[CrossRef] [PubMed]

2003

A. Abbott, Nature 424, 870 (2003).
[CrossRef] [PubMed]

2000

A. Rohrbach, Biophys. J. 78, 2641 (2000).
[CrossRef] [PubMed]

1993

A. H. Voie, D. H. Burns, and F. A. Spelman, J. Microsc-Oxford 170, 229 (1993).
[CrossRef]

1985

1978

Abbott, A.

A. Abbott, Nature 424, 870 (2003).
[CrossRef] [PubMed]

Burns, D. H.

A. H. Voie, D. H. Burns, and F. A. Spelman, J. Microsc-Oxford 170, 229 (1993).
[CrossRef]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, Science 305, 1007 (2004).
[CrossRef] [PubMed]

Dholakia, K.

D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).
[CrossRef]

Feit, M. D.

Fleck, J. A.

Huisken, J.

J. Huisken and D. Y. R. Stainier, Opt. Lett. 32, 2608 (2007).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, Science 305, 1007 (2004).
[CrossRef] [PubMed]

Keller, P. J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, Science 322, 1065 (2008).
[CrossRef] [PubMed]

McGloin, D.

D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).
[CrossRef]

Rohrbach, A.

A. Rohrbach, Biophys. J. 78, 2641 (2000).
[CrossRef] [PubMed]

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, Science 322, 1065 (2008).
[CrossRef] [PubMed]

Spelman, F. A.

A. H. Voie, D. H. Burns, and F. A. Spelman, J. Microsc-Oxford 170, 229 (1993).
[CrossRef]

Stainier, D. Y. R.

Stelzer, E. H. K.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, Science 322, 1065 (2008).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, Science 305, 1007 (2004).
[CrossRef] [PubMed]

Streibl, N.

Swoger, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, Science 305, 1007 (2004).
[CrossRef] [PubMed]

Voie, A. H.

A. H. Voie, D. H. Burns, and F. A. Spelman, J. Microsc-Oxford 170, 229 (1993).
[CrossRef]

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, Science 322, 1065 (2008).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, Science 305, 1007 (2004).
[CrossRef] [PubMed]

Appl. Opt.

Biophys. J.

A. Rohrbach, Biophys. J. 78, 2641 (2000).
[CrossRef] [PubMed]

Contemp. Phys.

D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).
[CrossRef]

J. Microsc-Oxford

A. H. Voie, D. H. Burns, and F. A. Spelman, J. Microsc-Oxford 170, 229 (1993).
[CrossRef]

J. Opt. Soc. Am. A

Nature

A. Abbott, Nature 424, 870 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Science

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, Science 305, 1007 (2004).
[CrossRef] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, Science 322, 1065 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Illumination along z and detection in y in a 90° arrangement. (b) Magnification of a light-sheet propagating through a cluster of spheres. (c) Scheme for illumination of and scattering at spheres with index n(r). Illuminated spheres are green.

Fig. 2
Fig. 2

Cross sections of unstained spheres and of ideal light-sheets in the center of the sphere cluster. (a) Gaussian beam focused only in y at NA = 0.26 , (b) focused Gaussian beam scanned in x at NA = 0.2 , (c) focused Bessel beam scanned in x at NA = 0.52 , (d) detection PSF h det ( x,y ) with NA = 0.9 is shown for size comparison.

Fig. 3
Fig. 3

Illumination and imaging with a plane wave (Type A), a cylindrical beam (Type B), a scanned Gaussian beam (Type C), and a scanned Bessel beam (Type D).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

h ill ( r ) = | E tot ( r ) | 2 = | E inc ( r ) + E sca ( r ) | 2 = h inc ( r ) + h sca ( r ) ,
E ̃ tot ( k x , k y , z + d z ) = F T [ E tot ( x , y , z ) × e ( i k 0 δ n ( x , y , z ) d z ) ] × e i d z ( k 0 n ¯ ) 2 k x 2 k y 2 .
b ( r ) = { [ h inc ( r ) + h sca ( r ) ] C ( r ) } h det ( r ) .
b ghost ( x , y 0 , z ) = | [ h sca ( r ) C ( r ) ] h det ( r ) | y = y 0 .
Q = A 1 | b ̂ ghost | d A , b ̂ ghost = b ghost 2 σ ( b ideal ) .

Metrics