Abstract

We demonstrate a monolithic double diffusion-bonded monolithic Tm:YAG nonplanar ring laser pumped by a fiber-coupled laser diode. Up to 867mW single-frequency output at 2.01μm was obtained from the Tm:YAG system at room temperature, with a slope efficiency and an optical–optical efficiency of 31.6% and 19.2%. The power stability of the single frequency laser was 0.32% within 30min.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski and A. Mooradian, Opt. Lett. 14, 24 (1989).
    [CrossRef] [PubMed]
  2. Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, Appl. Phys. B 94, 81 (2009).
    [CrossRef]
  3. R. Knappe, G. Bitz, K. J. Boller, and R. Wallenstein, Opt. Commun. 143, 42 (1997).
    [CrossRef]
  4. K. Nakagewa, Y. Shimizu, and M. Ohtsu, IEEE Photonics Technol. Lett. 6, 499 (1994).
    [CrossRef]
  5. T. J. Kane and R. L. Byer, Opt. Lett. 10, 65 (1985).
    [CrossRef] [PubMed]
  6. T. J. Kane, A. C. Nilsson, and R. L. Byer, Opt. Lett. 12, 175 (1987).
    [CrossRef] [PubMed]
  7. I. S. Kubo and T. J. Kane, IEEE J. Quantum Electron. 28, 1033 (1992).
    [CrossRef]
  8. C. Svelto and I. Freitag, Electron. Lett. 35, 152 (1999).
    [CrossRef]
  9. P. Burdack, T. Fox, M. Bode, and I. Freitag, Opt. Express 14, 4363 (2006).
    [CrossRef] [PubMed]
  10. B. Yao, X. Duan, D. Fang, Y. Zhang, L. Ke, Y. Ju, Y. Wang, and G. Zhao, Opt. Lett. 33, 2161 (2008).
    [CrossRef] [PubMed]
  11. A. C. Nilsson, E. K. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 25, 767 (1989).
    [CrossRef]

2009 (1)

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, Appl. Phys. B 94, 81 (2009).
[CrossRef]

2008 (1)

2006 (1)

1999 (1)

C. Svelto and I. Freitag, Electron. Lett. 35, 152 (1999).
[CrossRef]

1997 (1)

R. Knappe, G. Bitz, K. J. Boller, and R. Wallenstein, Opt. Commun. 143, 42 (1997).
[CrossRef]

1994 (1)

K. Nakagewa, Y. Shimizu, and M. Ohtsu, IEEE Photonics Technol. Lett. 6, 499 (1994).
[CrossRef]

1992 (1)

I. S. Kubo and T. J. Kane, IEEE J. Quantum Electron. 28, 1033 (1992).
[CrossRef]

1989 (2)

A. C. Nilsson, E. K. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 25, 767 (1989).
[CrossRef]

J. J. Zayhowski and A. Mooradian, Opt. Lett. 14, 24 (1989).
[CrossRef] [PubMed]

1987 (1)

1985 (1)

Bitz, G.

R. Knappe, G. Bitz, K. J. Boller, and R. Wallenstein, Opt. Commun. 143, 42 (1997).
[CrossRef]

Bode, M.

Boller, K. J.

R. Knappe, G. Bitz, K. J. Boller, and R. Wallenstein, Opt. Commun. 143, 42 (1997).
[CrossRef]

Burdack, P.

Byer, R. L.

Duan, X.

Fang, D.

Fox, T.

Freitag, I.

Gao, C.

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, Appl. Phys. B 94, 81 (2009).
[CrossRef]

Gao, M.

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, Appl. Phys. B 94, 81 (2009).
[CrossRef]

Gustafson, E. K.

A. C. Nilsson, E. K. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 25, 767 (1989).
[CrossRef]

Ju, Y.

Kane, T. J.

Ke, L.

Knappe, R.

R. Knappe, G. Bitz, K. J. Boller, and R. Wallenstein, Opt. Commun. 143, 42 (1997).
[CrossRef]

Kubo, I. S.

I. S. Kubo and T. J. Kane, IEEE J. Quantum Electron. 28, 1033 (1992).
[CrossRef]

Lin, Z.

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, Appl. Phys. B 94, 81 (2009).
[CrossRef]

Mooradian, A.

Nakagewa, K.

K. Nakagewa, Y. Shimizu, and M. Ohtsu, IEEE Photonics Technol. Lett. 6, 499 (1994).
[CrossRef]

Nilsson, A. C.

A. C. Nilsson, E. K. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 25, 767 (1989).
[CrossRef]

T. J. Kane, A. C. Nilsson, and R. L. Byer, Opt. Lett. 12, 175 (1987).
[CrossRef] [PubMed]

Ohtsu, M.

K. Nakagewa, Y. Shimizu, and M. Ohtsu, IEEE Photonics Technol. Lett. 6, 499 (1994).
[CrossRef]

Shimizu, Y.

K. Nakagewa, Y. Shimizu, and M. Ohtsu, IEEE Photonics Technol. Lett. 6, 499 (1994).
[CrossRef]

Svelto, C.

C. Svelto and I. Freitag, Electron. Lett. 35, 152 (1999).
[CrossRef]

Wallenstein, R.

R. Knappe, G. Bitz, K. J. Boller, and R. Wallenstein, Opt. Commun. 143, 42 (1997).
[CrossRef]

Wang, Y.

Weber, H.

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, Appl. Phys. B 94, 81 (2009).
[CrossRef]

Yao, B.

Zayhowski, J. J.

Zhang, Y.

Zhao, G.

Appl. Phys. B (1)

Z. Lin, C. Gao, M. Gao, Y. Zhang, and H. Weber, Appl. Phys. B 94, 81 (2009).
[CrossRef]

Electron. Lett. (1)

C. Svelto and I. Freitag, Electron. Lett. 35, 152 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. C. Nilsson, E. K. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 25, 767 (1989).
[CrossRef]

I. S. Kubo and T. J. Kane, IEEE J. Quantum Electron. 28, 1033 (1992).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

K. Nakagewa, Y. Shimizu, and M. Ohtsu, IEEE Photonics Technol. Lett. 6, 499 (1994).
[CrossRef]

Opt. Commun. (1)

R. Knappe, G. Bitz, K. J. Boller, and R. Wallenstein, Opt. Commun. 143, 42 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the double diffusion-bonded Tm:YAG NPRO crystal.

Fig. 2
Fig. 2

Schematic diagram of the double diffusion-bonded Tm:YAG NPRO pumped by a fiber-coupled laser diode.

Fig. 3
Fig. 3

Single-frequency output power as a function of the pump power (left) and the longitudinal spectrum observed with a scanning Fabry–Perot interferometer with 3.75 GHz free spectral range (right).

Fig. 4
Fig. 4

Experimental result of the output power versus of the time for the Tm:YAG NPRO. The relative power stability is 0.32% in 30 min .

Fig. 5
Fig. 5

Laser frequency as a function of the temperature. The tuning coefficient is determined to be 1.89 GHz ° C .

Metrics