Abstract

We outline a resonator design that allows for the selection of a Gaussian mode by diffractive optical elements. This is made possible by the metamorphosis of a Gaussian beam into a flat-top beam during propagation from one end of the resonator to the other. By placing the gain medium at the flat-top beam end, it is possible to extract high energy in a low-loss cavity. A further feature of this resonator is the ability to select the field properties at either end of the cavity almost independently, thus opening the way to minimize the output divergence while simultaneously maximizing the output energy.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Belanger and C. Pare, Opt. Lett. 16, 1057 (1991).
    [CrossRef] [PubMed]
  2. C. Pare and P. A. Belanger, IEEE J. Quantum Electron. 28, 355 (1992).
    [CrossRef]
  3. J. R. Leger, D. Chen, and Z. Wang, Opt. Lett. 19, 108 (1994).
    [CrossRef] [PubMed]
  4. L. A. Romero and F. M. Dickey, J. Opt. Soc. Am. A 13, 751 (1996).
    [CrossRef]
  5. F. Gori, Opt. Commun. 107, 335 (1994).
    [CrossRef]
  6. A. E. Siegman, Lasers (University Science Books, 1986).
  7. G. Fox and T. Li, Bell Syst. Tech. J. 40, 453 (1961).
  8. I. Litvin and A. Forbes, Opt. Express 17, 15891 (2009).
    [CrossRef] [PubMed]

2009 (1)

1996 (1)

1994 (2)

1992 (1)

C. Pare and P. A. Belanger, IEEE J. Quantum Electron. 28, 355 (1992).
[CrossRef]

1991 (1)

1961 (1)

G. Fox and T. Li, Bell Syst. Tech. J. 40, 453 (1961).

Bell Syst. Tech. J. (1)

G. Fox and T. Li, Bell Syst. Tech. J. 40, 453 (1961).

IEEE J. Quantum Electron. (1)

C. Pare and P. A. Belanger, IEEE J. Quantum Electron. 28, 355 (1992).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

F. Gori, Opt. Commun. 107, 335 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (1)

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the resonator concept.

Fig. 2
Fig. 2

Numerical results of the Fox–Li analysis, showing (a) Gaussian and flat-top beams after starting from random noise and (b) calculated phase profile of each DOE, with the analytical phase function for the second DOE shown as data points.

Fig. 3
Fig. 3

Cross sections of the first three higher-order competing modes at mirror M 2 .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1 R 2 = 1 R 1 x ( d φ M d x ) ψ 1 2 ( x ) d x x 2 ψ 1 2 ( x ) d x ,
u 2 ( r ) = i k f exp ( i k f ) exp ( i k r 2 2 f ) 0 u 1 ( ρ ) exp [ i φ SF ( ρ ) ] J 0 ( k r ρ f ) ρ d ρ .
φ SF ( ρ ) = β π 2 0 ρ w 0 1 exp ( ξ 2 ) d ξ ,
β = 2 π w 0 w FTB f λ .
φ DOE 1 ( ρ ) = φ SF ( ρ ) k ρ 2 2 f ,
φ DOE 2 ( r ) = arg { exp [ i ( k 2 f r 2 + φ SF ( ρ ( r ) ) β r ρ ( r ) w FTB w 0 ) ] } ,
ρ ( r ) = w 0 ln [ 1 ( 2 r π w FTB ) 2 ] .

Metrics