Abstract

We demonstrate the reduction of semiconductor laser phase noise by using an electrical feed-forward scheme. We have carried out proof-of-concept experiments on a commercially available distributed-feedback laser emitting at the 1550 nm communication band. The preliminary results show more than 20 times reduction in the phase-noise power spectrum. The feed-forward scheme does not have the limited bandwidth, stability, and speed issues that are common in feedback systems. Moreover, in the absence of electronic noise, feed-forward can completely cancel the close-in phase noise. In this scheme, the ultimate achievable phase noise will be limited by the electronics noise. Using the proposed feed-forward approach, the linewidth of semiconductor lasers can be reduced by 3–4 orders of magnitude in a monolithic approach using today’s low-noise scaled transistors with terahertz gain–bandwidth product.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ohtsu and S. Kotajima, IEEE J. Quantum Electron. 21, 1905 (1985).
    [CrossRef]
  2. R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
    [CrossRef]
  3. Y. Shevy, J. Kitching, and A. Yariv, Opt. Lett. 18, 1071 (1993).
    [CrossRef] [PubMed]
  4. C.-H. Shin and M. Ohtsu, Opt. Lett. 15, 1455 (1990).
    [CrossRef] [PubMed]
  5. R. D. Esman and K. Iwashita, in Digest of Conference on Optical Fiber Communication, Vol. 5 of OSA Technical Digest Series (Optical Society of America, 1992), paper TuM3.
  6. W. Sorin, K. Chang, G. Conrad, and P. Hernday, J. Lightwave Technol. 10, 787 (1992).
    [CrossRef]
  7. S. J. Rogersy, J. B. Browny, J. D. C. Jonesz, R. K. Y. Chanx, and H. H. Wong, Meas. Sci. Technol. 7, 209 (1996).
    [CrossRef]

1996

S. J. Rogersy, J. B. Browny, J. D. C. Jonesz, R. K. Y. Chanx, and H. H. Wong, Meas. Sci. Technol. 7, 209 (1996).
[CrossRef]

1993

1992

W. Sorin, K. Chang, G. Conrad, and P. Hernday, J. Lightwave Technol. 10, 787 (1992).
[CrossRef]

1990

1985

M. Ohtsu and S. Kotajima, IEEE J. Quantum Electron. 21, 1905 (1985).
[CrossRef]

1980

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
[CrossRef]

Browny, J. B.

S. J. Rogersy, J. B. Browny, J. D. C. Jonesz, R. K. Y. Chanx, and H. H. Wong, Meas. Sci. Technol. 7, 209 (1996).
[CrossRef]

Chang, K.

W. Sorin, K. Chang, G. Conrad, and P. Hernday, J. Lightwave Technol. 10, 787 (1992).
[CrossRef]

Chanx, R. K. Y.

S. J. Rogersy, J. B. Browny, J. D. C. Jonesz, R. K. Y. Chanx, and H. H. Wong, Meas. Sci. Technol. 7, 209 (1996).
[CrossRef]

Conrad, G.

W. Sorin, K. Chang, G. Conrad, and P. Hernday, J. Lightwave Technol. 10, 787 (1992).
[CrossRef]

Esman, R. D.

R. D. Esman and K. Iwashita, in Digest of Conference on Optical Fiber Communication, Vol. 5 of OSA Technical Digest Series (Optical Society of America, 1992), paper TuM3.

Hernday, P.

W. Sorin, K. Chang, G. Conrad, and P. Hernday, J. Lightwave Technol. 10, 787 (1992).
[CrossRef]

Iwashita, K.

R. D. Esman and K. Iwashita, in Digest of Conference on Optical Fiber Communication, Vol. 5 of OSA Technical Digest Series (Optical Society of America, 1992), paper TuM3.

Jonesz, J. D. C.

S. J. Rogersy, J. B. Browny, J. D. C. Jonesz, R. K. Y. Chanx, and H. H. Wong, Meas. Sci. Technol. 7, 209 (1996).
[CrossRef]

Kitching, J.

Kobayashi, K.

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
[CrossRef]

Kotajima, S.

M. Ohtsu and S. Kotajima, IEEE J. Quantum Electron. 21, 1905 (1985).
[CrossRef]

Lang, R.

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
[CrossRef]

Ohtsu, M.

C.-H. Shin and M. Ohtsu, Opt. Lett. 15, 1455 (1990).
[CrossRef] [PubMed]

M. Ohtsu and S. Kotajima, IEEE J. Quantum Electron. 21, 1905 (1985).
[CrossRef]

Rogersy, S. J.

S. J. Rogersy, J. B. Browny, J. D. C. Jonesz, R. K. Y. Chanx, and H. H. Wong, Meas. Sci. Technol. 7, 209 (1996).
[CrossRef]

Shevy, Y.

Shin, C.-H.

Sorin, W.

W. Sorin, K. Chang, G. Conrad, and P. Hernday, J. Lightwave Technol. 10, 787 (1992).
[CrossRef]

Wong, H. H.

S. J. Rogersy, J. B. Browny, J. D. C. Jonesz, R. K. Y. Chanx, and H. H. Wong, Meas. Sci. Technol. 7, 209 (1996).
[CrossRef]

Yariv, A.

IEEE J. Quantum Electron.

M. Ohtsu and S. Kotajima, IEEE J. Quantum Electron. 21, 1905 (1985).
[CrossRef]

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
[CrossRef]

J. Lightwave Technol.

W. Sorin, K. Chang, G. Conrad, and P. Hernday, J. Lightwave Technol. 10, 787 (1992).
[CrossRef]

Meas. Sci. Technol.

S. J. Rogersy, J. B. Browny, J. D. C. Jonesz, R. K. Y. Chanx, and H. H. Wong, Meas. Sci. Technol. 7, 209 (1996).
[CrossRef]

Opt. Lett.

Other

R. D. Esman and K. Iwashita, in Digest of Conference on Optical Fiber Communication, Vol. 5 of OSA Technical Digest Series (Optical Society of America, 1992), paper TuM3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagram of the feed-forward phase-noise cancellation scheme. The MZI output fluctuations are due to environmental variations, and its quadrature locking with the slow feedback loop is also shown.

Fig. 2
Fig. 2

Measured FM noise of the DFB laser at 1.75 times the threshold measured on an electrical spectrum analyzer ( RBW = 10 KHz ) . The nulls correspond to a 3.0 ns delay between the arms of the interferometer.

Fig. 3
Fig. 3

(a) Discriminated frequency noise in the main arm without (black curve) and with (gray curve) the feed-forward signal applied to the OPM. (b) Inverse of separation between nulls versus length of optical fiber added to the main arm.

Fig. 4
Fig. 4

Discriminated frequency noise in the main arm without the feed-forward signal (black solid curve), with the feed-forward signal with matched gain (gray solid curve), and with −1 dB (dotted curve) and +1 dB (dashed curve) mismatched gain.

Fig. 5
Fig. 5

Discriminated frequency noise with and without applying the feed-forward signal, with the optical heterodyne spectrum as an inset.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

i PD ( t ) = 2 P 1 P 2 R PD cos ( 2 π ν 0 τ + φ ( t ) φ ( t τ ) ) ± 2 P 1 P 2 R PD τ φ ̇ ( t ) ,
i PD ( ω ) = ± 4 j P 1 P 2 R PD e j ω τ 2 sin ( ω τ 2 ) φ ( ω ) .
| G | 1 2 τ P 1 P 2 R PD K mod ,
S φ , canceled = 4 sin 2 ( 2 π f τ m 2 ) S φ ,

Metrics