Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Semiconductor laser phase-noise cancellation using an electrical feed-forward scheme

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate the reduction of semiconductor laser phase noise by using an electrical feed-forward scheme. We have carried out proof-of-concept experiments on a commercially available distributed-feedback laser emitting at the 1550 nm communication band. The preliminary results show more than 20 times reduction in the phase-noise power spectrum. The feed-forward scheme does not have the limited bandwidth, stability, and speed issues that are common in feedback systems. Moreover, in the absence of electronic noise, feed-forward can completely cancel the close-in phase noise. In this scheme, the ultimate achievable phase noise will be limited by the electronics noise. Using the proposed feed-forward approach, the linewidth of semiconductor lasers can be reduced by 3–4 orders of magnitude in a monolithic approach using today’s low-noise scaled transistors with terahertz gain–bandwidth product.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Ultra-low-noise carrier-envelope phase stabilization of a Kerr-lens mode-locked Yb:CYA laser frequency comb with a feed-forward method

Ziyue Zhang, Hainian Han, Huibo Wang, Xiaodong Shao, Shaobo Fang, and Zhiyi Wei
Opt. Lett. 44(22) 5489-5492 (2019)

Tunable squeezed-light generation from twin beams using an optical-phase feed-forward scheme

Chonghoon Kim and Prem Kumar
Opt. Lett. 16(10) 755-757 (1991)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved