Abstract

We report a compact all-fiber Bessel beam generator using hollow optical fiber (HOF) and coreless silica fiber based on a self-assembled polymer lens. A nearly diffraction-free Bessel beam pattern was observed with its focused beam diameter of 20 μm maintained over a propagation distance of 550 μm. The generated Bessel beams were experimentally tested under various structural parameters such as the diameters of the HOF and operating wavelengths. A beam propagation method was applied to simulate the proposed device, which shows good agreement with the experimental observations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
    [CrossRef] [PubMed]
  2. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
    [CrossRef]
  3. J. Durnin, J. J. Miceli, and J. H. Eberly, Opt. Lett. 13, 79 (1988).
    [CrossRef] [PubMed]
  4. D. McGloin, V. Garces-Chavez, and K. Dholakia, Opt. Lett. 28, 657 (2003).
    [CrossRef] [PubMed]
  5. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, Opt. Lett. 27, 243 (2002).
    [CrossRef]
  6. Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, Appl. Opt. 31, 2708 (1992).
    [CrossRef] [PubMed]
  7. R. M. Herman and T. A. Wiggins, J. Opt. Soc. Am. A 8, 932 (1991).
    [CrossRef]
  8. S. Ramachandran and S. Ghalmi, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CPDB5.
  9. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, Opt. Lett. 33, 2155 (2008).
    [CrossRef] [PubMed]
  10. K. Oh, S. Choi, Y. Jung, and J. W. Lee, J. Lightwave Technol. 23, 524 (2005).
    [CrossRef]
  11. J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 16, 2499 (2005).
    [CrossRef]

2008 (1)

2005 (2)

K. Oh, S. Choi, Y. Jung, and J. W. Lee, J. Lightwave Technol. 23, 524 (2005).
[CrossRef]

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 16, 2499 (2005).
[CrossRef]

2003 (1)

2002 (1)

1992 (1)

1991 (1)

1988 (1)

1987 (2)

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[CrossRef]

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

Berns, M. W.

Brown, D. L.

Chang, S.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 16, 2499 (2005).
[CrossRef]

Chen, Z.

Choi, S.

Dholakia, K.

Ding, Z.

Durnin, J.

Eberly, J. H.

Garces-Chavez, V.

Ghalmi, S.

S. Ramachandran and S. Ghalmi, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CPDB5.

Han, M.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 16, 2499 (2005).
[CrossRef]

Herman, R. M.

Huang, H.

Jung, Y.

Kim, J.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 16, 2499 (2005).
[CrossRef]

Lee, J. W.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 16, 2499 (2005).
[CrossRef]

K. Oh, S. Choi, Y. Jung, and J. W. Lee, J. Lightwave Technol. 23, 524 (2005).
[CrossRef]

Lin, Y.

McGloin, D.

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, Opt. Lett. 13, 79 (1988).
[CrossRef] [PubMed]

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

Mohanty, K. S.

Mohanty, S. K.

Nelson, J. S.

Oh, K.

J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, IEEE Photon. Technol. Lett. 16, 2499 (2005).
[CrossRef]

K. Oh, S. Choi, Y. Jung, and J. W. Lee, J. Lightwave Technol. 23, 524 (2005).
[CrossRef]

Ramachandran, S.

S. Ramachandran and S. Ghalmi, in Conference on Lasers and Electro-Optics (Optical Society of America, 2008), paper CPDB5.

Ren, H.

Seka, W.

Wiggins, T. A.

Zhao, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of all-fiber Bessel beam generator and microscope image of the proposed device serially concatenated HOF, CSF, and polymer lens tip. Inset, expected typical Bessel beam pattern.

Fig. 2
Fig. 2

Simulated results of the Bessel beam propagation for the proposed structure using BeamPROP. Top view of the beam intensity in airhole diameters of (a) 10, (b) 20, and (c) 30 μm; (d) beam diverging properties on the 30 μm airhole without a polymer lens and CSF structure; (e) contour map of the transverse field profiles in (c).

Fig. 3
Fig. 3

Near-field images of the generated Bessel beam and mode intensity distributions along with different HOF airhole diameters of (a) 10, (b) 20, and (c) 30 μm at a 1550 nm operating wavelength.

Fig. 4
Fig. 4

Beam propagation images on the X Z plane in a milk–water solution: (a) Bessel beam from the proposed device; (b) Gaussian beam from cleaved SMF at a 635 nm operating wavelength; (c), (d) images of (a) and (b) without microscope illumination at the back, respectively; (e) intensity distribution profile of (c) and (d).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Φ ( x , y , z ; κ ) = exp [ i β z ] J 0 ( α ρ ) ,
Z max R d 2 f ,
R eff = d 2 + f λ Δ d .

Metrics