Abstract

The time-domain degree of polarization of a stationary, random optical beam, in general, differs from that in the frequency domain. We elucidate the origin of their differences and consider several examples in which the two degrees of polarization either are or are not the same.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007).
  2. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  3. A. T. Friberg and E. Wolf, Opt. Lett. 20, 623 (1995).
    [CrossRef] [PubMed]
  4. E. Wolf, Opt. Lett. 8, 250 (1983).
    [CrossRef] [PubMed]
  5. L. Basano, P. Ottonello, G. Rottigni, and M. Vicari, Appl. Opt. 42, 6239 (2003).
    [CrossRef] [PubMed]
  6. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
    [CrossRef]
  7. K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, J. Opt. Soc. Am. A 22, 561 (2005).
    [CrossRef]
  8. A. Shevchenko, T. Setälä, M. Kaivola, and A. T. Friberg, New J. Phys. 11, 073004 (2009).
    [CrossRef]

2009 (1)

A. Shevchenko, T. Setälä, M. Kaivola, and A. T. Friberg, New J. Phys. 11, 073004 (2009).
[CrossRef]

2005 (1)

2003 (1)

2002 (1)

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

1995 (1)

1983 (1)

Basano, L.

Friberg, A. T.

A. Shevchenko, T. Setälä, M. Kaivola, and A. T. Friberg, New J. Phys. 11, 073004 (2009).
[CrossRef]

K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, J. Opt. Soc. Am. A 22, 561 (2005).
[CrossRef]

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

A. T. Friberg and E. Wolf, Opt. Lett. 20, 623 (1995).
[CrossRef] [PubMed]

Kaivola, M.

A. Shevchenko, T. Setälä, M. Kaivola, and A. T. Friberg, New J. Phys. 11, 073004 (2009).
[CrossRef]

K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, J. Opt. Soc. Am. A 22, 561 (2005).
[CrossRef]

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Lindfors, K.

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Ottonello, P.

Rottigni, G.

Setälä, T.

A. Shevchenko, T. Setälä, M. Kaivola, and A. T. Friberg, New J. Phys. 11, 073004 (2009).
[CrossRef]

K. Lindfors, T. Setälä, M. Kaivola, and A. T. Friberg, J. Opt. Soc. Am. A 22, 561 (2005).
[CrossRef]

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Shevchenko, A.

A. Shevchenko, T. Setälä, M. Kaivola, and A. T. Friberg, New J. Phys. 11, 073004 (2009).
[CrossRef]

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Vicari, M.

Wolf, E.

A. T. Friberg and E. Wolf, Opt. Lett. 20, 623 (1995).
[CrossRef] [PubMed]

E. Wolf, Opt. Lett. 8, 250 (1983).
[CrossRef] [PubMed]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007).

Appl. Opt. (1)

J. Opt. Soc. Am. A (1)

New J. Phys. (1)

A. Shevchenko, T. Setälä, M. Kaivola, and A. T. Friberg, New J. Phys. 11, 073004 (2009).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. E (1)

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Other (2)

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (17)

Equations on this page are rendered with MathJax. Learn more.

J = ( J x x J x y J y x J y y ) ,
P t = 1 4 det J tr 2 J ,
E ( τ ) = ( E x x ( τ ) E x y ( τ ) E y x ( τ ) E y y ( τ ) ) ,
γ i j ( τ ) = E i j ( τ ) [ E i i ( 0 ) E j j ( 0 ) ] 1 2 .
Φ ( ω ) = 1 2 π E ( τ ) e i ω τ d τ .
P f ( ω ) = 1 4 det Φ ( ω ) tr 2 Φ ( ω ) ,
E ( τ ) = 0 Φ ( ω ) e i ω τ d ω ,
J = 0 Φ ( ω ) d ω .
E ( τ ) = J e i ω 0 τ .
Φ ( ω ) = J δ ( ω ω 0 ) .
E ( τ ) = J f ( τ ) ,
Φ ( ω ) = J f ̃ ( ω ) ,
E ( τ ) = diag [ I f x ( τ ) , I f y ( τ ) ] ,
Φ ( ω ) = diag [ I f ̃ x ( ω ) , I f ̃ y ( ω ) ] .
P f ( ω ) = | f ̃ x ( ω ) f ̃ y ( ω ) f ̃ x ( ω ) + f ̃ y ( ω ) | ,
E ( τ ) = ( E A ( τ ) E A ( τ τ d ) E A ( τ + τ d ) E A ( τ ) ) ,
Φ ( ω ) = ( 1 e i ω τ d e i ω τ d 1 ) E ̃ A ( ω )

Metrics