Abstract

We demonstrate efficient optical parametric amplification and generation in a gas-filled hollow-core fiber of near-infrared pulses, peaked at 1.4μm wavelength, with 5μJ energy and 45 fs duration at the fiber output. Numerical simulations confirm that the OPA is phase matched through excitation of higher-order fiber modes.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).
    [CrossRef]
  2. C. Vozzi, F. Calegari, E. Benedetti, S. Gasilov, G. Sansone, G. Cerullo, M. Nisoli, S. De Silvestri, and S. Stagira, Opt. Lett. 32, 2957 (2007).
    [CrossRef] [PubMed]
  3. C. Erny and K. Moutzouris, Opt. Lett. 32, 1138 (2007).
    [CrossRef] [PubMed]
  4. O. Chalus, P. K. Bates, M. Smolarski, and J. Biegert, Opt. Express 17, 3587 (2009).
    [CrossRef] [PubMed]
  5. A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
    [CrossRef] [PubMed]
  6. T. Fuji and T. Suzuki, Opt. Lett. 32, 3330 (2007).
    [CrossRef] [PubMed]
  7. C. G. Durfee III, S. Backus, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 22, 1565 (1997).
    [CrossRef]
  8. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, Opt. Lett. 22, 522 (1997).
    [CrossRef] [PubMed]
  9. J. K. Koga, J. Opt. Soc. Am. B 26, 930 (2009).
    [CrossRef]
  10. E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
  11. A. Dalgarno and A. E. Kingston, Proc. R. Soc. London, Ser. A 259, 424 (1960).
    [CrossRef]

2009 (2)

2008 (1)

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).
[CrossRef]

2007 (3)

2002 (1)

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

1997 (2)

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

1960 (1)

A. Dalgarno and A. E. Kingston, Proc. R. Soc. London, Ser. A 259, 424 (1960).
[CrossRef]

Agostini, P.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).
[CrossRef]

Backus, S.

Baltuška, A.

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

Bates, P. K.

Benedetti, E.

Biegert, J.

Blaga, C. I.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).
[CrossRef]

Calegari, F.

Catoire, F.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).
[CrossRef]

Cerullo, G.

Chalus, O.

Chirla, R.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).
[CrossRef]

Colosimo, P.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).
[CrossRef]

Dalgarno, A.

A. Dalgarno and A. E. Kingston, Proc. R. Soc. London, Ser. A 259, 424 (1960).
[CrossRef]

De Silvestri, S.

DiMauro, L. F.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).
[CrossRef]

Doumy, G.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).
[CrossRef]

Durfee, C. G.

Erny, C.

Ferencz, K.

Fuji, T.

T. Fuji and T. Suzuki, Opt. Lett. 32, 3330 (2007).
[CrossRef] [PubMed]

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

Gasilov, S.

Hauri, C.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).
[CrossRef]

Kapteyn, H. C.

Kingston, A. E.

A. Dalgarno and A. E. Kingston, Proc. R. Soc. London, Ser. A 259, 424 (1960).
[CrossRef]

Kobayashi, T.

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

Koga, J. K.

Krausz, F.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

March, A. M.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).
[CrossRef]

Moutzouris, K.

Muller, H. G.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).
[CrossRef]

Murnane, M. M.

Nisoli, M.

Paulus, G. G.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).
[CrossRef]

Sansone, G.

Sartania, S.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Smolarski, M.

Spielmann, Ch.

Stagira, S.

Suzuki, T.

Svelto, O.

Szipöcs, R.

Tate, J.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).
[CrossRef]

Vozzi, C.

Wheeler, J.

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

A. Baltuška, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. A (1)

A. Dalgarno and A. E. Kingston, Proc. R. Soc. London, Ser. A 259, 424 (1960).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental layout. The input Ti:Sa laser pulse (800 nm, 30 fs, 1.2 mJ) is duplicated in a 100 - μ m -thick BBO crystal. The fundamental and second-harmonic pulses are focused with an f = 2   m focusing mirror into the hollow-core fiber ( 550 μ m inner core diameter, 1 m length).

Fig. 2
Fig. 2

Measured spectra. (a) Dashed curve, input second-harmonic seed spectrum; solid curve, output amplified seed spectrum. (b) Dashed curve, input pump spectrum; solid curve, output pump spectrum. (c) Solid curve, NIR spectrum with 1 nJ seed; dashed curve, calculated NIR spectrum starting from the output spectra in (a) and (b).

Fig. 3
Fig. 3

NIR temporal and spatial profiles. (a) and (b) are the measured and retrieved FROG spectrograms, respectively, in logarithmic scale (three decades). (c) Solid curves, retrieved temporal intensity and instantaneous frequency change ( Δ ω ) with a FWHM of 82 fs (FROG error 0.8%); dashed curve, Fourier transform of the spectrum in Fig. 2c with a FWHM of 10 fs. (d) is the spatial near-field profile of the NIR pulse, in logarithmic scale (three decades).

Fig. 4
Fig. 4

(a) Analytically evaluated coherence length for varying argon gas pressure. The three shaded areas show the coherence length for different combinations ( p , q , r ) where p, q, and r, are the mode orders of the fundamental, seed and NIR signal, respectively. The dashed curves gives the intersection at the experimentally optimized pressure of 1.4 bar, indicating expected NIR maxima at 1.3 , 1.4 , and 1.7 μ m . (b) The measured far-field distribution of the NIR mode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ β = 2 β pump β seed β NIR .
β = 2 π n ( λ , P ) λ { 1 1 2 [ u m , n λ n ( λ , P ) 2 π a ] 2 } ,

Metrics