Abstract

We report on the achievement of strong coherent emission from GaAs-based single-walled spiral microtubes, wherein photons are localized in an ultrathin (λ/25) region embedded with self-organized InGaAs quantum dots. The emission spectra measured at 300 K are characterized by a regular sequence of sharp optical modes with a maximum Q factor of 2500 and separation of 7  meV. The three-dimensional confinement of photons is made possible by the epitaxially smooth tube surface as well as an engineered surface geometry, achieved using a single photolithography step. The experimental results are analyzed using an equivalent planar dielectric waveguide model.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998).
    [CrossRef]
  2. Z. H. Zhong, N. M. Gabor, J. E. Sharping, A. L. Gaeta, and P. L. McEuen, Nat. Nanotechnol. 3, 201 (2008).
    [CrossRef] [PubMed]
  3. C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, Phys. Rev. Lett. 101, 127403 (2008).
    [CrossRef] [PubMed]
  4. S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, Nature 394, 52 (1998).
    [CrossRef] [PubMed]
  5. V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature 431, 284 (2004).
    [CrossRef] [PubMed]
  6. V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, Physica E (Amsterdam) 6, 828 (2000).
    [CrossRef]
  7. O. G. Schmidt and K. Eberl, Nature 410, 168 (2001).
    [CrossRef] [PubMed]
  8. C. Deneke and O. G. Schmidt, Physica E (Amsterdam) 23, 269 (2004).
    [CrossRef]
  9. A. V. Prinz, V. Y. Prinz, and V. A. Seleznev, Microelectron. Eng. 67-68, 782 (2003).
    [CrossRef]
  10. G. S. Huang, S. Kiravittaya, V. A. B. Quinones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, Appl. Phys. Lett. 94, 141901 (2009).
    [CrossRef]
  11. C. Deneke, N. Y. Jin-Phillipp, I. Loa, and O. G. Schmidt, Appl. Phys. Lett. 84, 4475 (2004).
    [CrossRef]
  12. C. Deneke and O. G. Schmidt, Appl. Phys. Lett. 85, 2914 (2004).
    [CrossRef]
  13. T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, Phys. Rev. Lett. 96, 077403 (2006).
    [CrossRef] [PubMed]
  14. S. Vicknesh, F. Li, and Z. Mi, Appl. Phys. Lett. 94, 081101 (2009).
    [CrossRef]
  15. M. Hosoda and T. Shigaki, Appl. Phys. Lett. 90, 181107 (2007).
    [CrossRef]
  16. K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer Verlag, 1998).

2009 (2)

G. S. Huang, S. Kiravittaya, V. A. B. Quinones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, Appl. Phys. Lett. 94, 141901 (2009).
[CrossRef]

S. Vicknesh, F. Li, and Z. Mi, Appl. Phys. Lett. 94, 081101 (2009).
[CrossRef]

2008 (2)

Z. H. Zhong, N. M. Gabor, J. E. Sharping, A. L. Gaeta, and P. L. McEuen, Nat. Nanotechnol. 3, 201 (2008).
[CrossRef] [PubMed]

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, Phys. Rev. Lett. 101, 127403 (2008).
[CrossRef] [PubMed]

2007 (1)

M. Hosoda and T. Shigaki, Appl. Phys. Lett. 90, 181107 (2007).
[CrossRef]

2006 (1)

T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, Phys. Rev. Lett. 96, 077403 (2006).
[CrossRef] [PubMed]

2004 (4)

C. Deneke, N. Y. Jin-Phillipp, I. Loa, and O. G. Schmidt, Appl. Phys. Lett. 84, 4475 (2004).
[CrossRef]

C. Deneke and O. G. Schmidt, Appl. Phys. Lett. 85, 2914 (2004).
[CrossRef]

V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature 431, 284 (2004).
[CrossRef] [PubMed]

C. Deneke and O. G. Schmidt, Physica E (Amsterdam) 23, 269 (2004).
[CrossRef]

2003 (1)

A. V. Prinz, V. Y. Prinz, and V. A. Seleznev, Microelectron. Eng. 67-68, 782 (2003).
[CrossRef]

2001 (1)

O. G. Schmidt and K. Eberl, Nature 410, 168 (2001).
[CrossRef] [PubMed]

2000 (1)

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, Physica E (Amsterdam) 6, 828 (2000).
[CrossRef]

1998 (2)

S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, Nature 394, 52 (1998).
[CrossRef] [PubMed]

S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998).
[CrossRef]

Arias, T. A.

V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature 431, 284 (2004).
[CrossRef] [PubMed]

Benyoucef, M.

G. S. Huang, S. Kiravittaya, V. A. B. Quinones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, Appl. Phys. Lett. 94, 141901 (2009).
[CrossRef]

Chehovskiy, A. V.

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, Physica E (Amsterdam) 6, 828 (2000).
[CrossRef]

Cheung, C. L.

S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, Nature 394, 52 (1998).
[CrossRef] [PubMed]

Dekker, C.

S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998).
[CrossRef]

Deneke, C.

C. Deneke and O. G. Schmidt, Physica E (Amsterdam) 23, 269 (2004).
[CrossRef]

C. Deneke, N. Y. Jin-Phillipp, I. Loa, and O. G. Schmidt, Appl. Phys. Lett. 84, 4475 (2004).
[CrossRef]

C. Deneke and O. G. Schmidt, Appl. Phys. Lett. 85, 2914 (2004).
[CrossRef]

Ding, F.

G. S. Huang, S. Kiravittaya, V. A. B. Quinones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, Appl. Phys. Lett. 94, 141901 (2009).
[CrossRef]

Eberl, K.

O. G. Schmidt and K. Eberl, Nature 410, 168 (2001).
[CrossRef] [PubMed]

Gabor, N. M.

Z. H. Zhong, N. M. Gabor, J. E. Sharping, A. L. Gaeta, and P. L. McEuen, Nat. Nanotechnol. 3, 201 (2008).
[CrossRef] [PubMed]

Gaeta, A. L.

Z. H. Zhong, N. M. Gabor, J. E. Sharping, A. L. Gaeta, and P. L. McEuen, Nat. Nanotechnol. 3, 201 (2008).
[CrossRef] [PubMed]

Gavrilova, T. A.

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, Physica E (Amsterdam) 6, 828 (2000).
[CrossRef]

Gutakovsky, A. K.

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, Physica E (Amsterdam) 6, 828 (2000).
[CrossRef]

Heitmann, D.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, Phys. Rev. Lett. 101, 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, Phys. Rev. Lett. 96, 077403 (2006).
[CrossRef] [PubMed]

Heyn, C.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, Phys. Rev. Lett. 101, 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, Phys. Rev. Lett. 96, 077403 (2006).
[CrossRef] [PubMed]

Hosoda, M.

M. Hosoda and T. Shigaki, Appl. Phys. Lett. 90, 181107 (2007).
[CrossRef]

Huang, G. S.

G. S. Huang, S. Kiravittaya, V. A. B. Quinones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, Appl. Phys. Lett. 94, 141901 (2009).
[CrossRef]

Jin-Phillipp, N. Y.

C. Deneke, N. Y. Jin-Phillipp, I. Loa, and O. G. Schmidt, Appl. Phys. Lett. 84, 4475 (2004).
[CrossRef]

Joselevich, E.

S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, Nature 394, 52 (1998).
[CrossRef] [PubMed]

Kipp, T.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, Phys. Rev. Lett. 101, 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, Phys. Rev. Lett. 96, 077403 (2006).
[CrossRef] [PubMed]

Kiravittaya, S.

G. S. Huang, S. Kiravittaya, V. A. B. Quinones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, Appl. Phys. Lett. 94, 141901 (2009).
[CrossRef]

Li, D.

K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer Verlag, 1998).

Li, F.

S. Vicknesh, F. Li, and Z. Mi, Appl. Phys. Lett. 94, 081101 (2009).
[CrossRef]

Lieber, C. M.

S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, Nature 394, 52 (1998).
[CrossRef] [PubMed]

Loa, I.

C. Deneke, N. Y. Jin-Phillipp, I. Loa, and O. G. Schmidt, Appl. Phys. Lett. 84, 4475 (2004).
[CrossRef]

McEuen, P. L.

Z. H. Zhong, N. M. Gabor, J. E. Sharping, A. L. Gaeta, and P. L. McEuen, Nat. Nanotechnol. 3, 201 (2008).
[CrossRef] [PubMed]

V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature 431, 284 (2004).
[CrossRef] [PubMed]

Mei, Y. F.

G. S. Huang, S. Kiravittaya, V. A. B. Quinones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, Appl. Phys. Lett. 94, 141901 (2009).
[CrossRef]

Mi, Z.

S. Vicknesh, F. Li, and Z. Mi, Appl. Phys. Lett. 94, 081101 (2009).
[CrossRef]

Preobrazhenskii, V. V.

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, Physica E (Amsterdam) 6, 828 (2000).
[CrossRef]

Prinz, A. V.

A. V. Prinz, V. Y. Prinz, and V. A. Seleznev, Microelectron. Eng. 67-68, 782 (2003).
[CrossRef]

Prinz, V. Y.

A. V. Prinz, V. Y. Prinz, and V. A. Seleznev, Microelectron. Eng. 67-68, 782 (2003).
[CrossRef]

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, Physica E (Amsterdam) 6, 828 (2000).
[CrossRef]

Putyato, M. A.

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, Physica E (Amsterdam) 6, 828 (2000).
[CrossRef]

Quinones, V. A. B.

G. S. Huang, S. Kiravittaya, V. A. B. Quinones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, Appl. Phys. Lett. 94, 141901 (2009).
[CrossRef]

Rastelli, A.

G. S. Huang, S. Kiravittaya, V. A. B. Quinones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, Appl. Phys. Lett. 94, 141901 (2009).
[CrossRef]

Rehberg, H.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, Phys. Rev. Lett. 101, 127403 (2008).
[CrossRef] [PubMed]

Roundy, D.

V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature 431, 284 (2004).
[CrossRef] [PubMed]

Sazonova, V.

V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature 431, 284 (2004).
[CrossRef] [PubMed]

Schmidt, O. G.

G. S. Huang, S. Kiravittaya, V. A. B. Quinones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, Appl. Phys. Lett. 94, 141901 (2009).
[CrossRef]

C. Deneke and O. G. Schmidt, Appl. Phys. Lett. 85, 2914 (2004).
[CrossRef]

C. Deneke, N. Y. Jin-Phillipp, I. Loa, and O. G. Schmidt, Appl. Phys. Lett. 84, 4475 (2004).
[CrossRef]

C. Deneke and O. G. Schmidt, Physica E (Amsterdam) 23, 269 (2004).
[CrossRef]

O. G. Schmidt and K. Eberl, Nature 410, 168 (2001).
[CrossRef] [PubMed]

Schultz, C. M.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, Phys. Rev. Lett. 101, 127403 (2008).
[CrossRef] [PubMed]

Seleznev, V. A.

A. V. Prinz, V. Y. Prinz, and V. A. Seleznev, Microelectron. Eng. 67-68, 782 (2003).
[CrossRef]

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, Physica E (Amsterdam) 6, 828 (2000).
[CrossRef]

Sharping, J. E.

Z. H. Zhong, N. M. Gabor, J. E. Sharping, A. L. Gaeta, and P. L. McEuen, Nat. Nanotechnol. 3, 201 (2008).
[CrossRef] [PubMed]

Shigaki, T.

M. Hosoda and T. Shigaki, Appl. Phys. Lett. 90, 181107 (2007).
[CrossRef]

Strelow, C.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, Phys. Rev. Lett. 101, 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, Phys. Rev. Lett. 96, 077403 (2006).
[CrossRef] [PubMed]

Tans, S. J.

S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998).
[CrossRef]

Ustunel, H.

V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature 431, 284 (2004).
[CrossRef] [PubMed]

Verschueren, A. R. M.

S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998).
[CrossRef]

Vicknesh, S.

S. Vicknesh, F. Li, and Z. Mi, Appl. Phys. Lett. 94, 081101 (2009).
[CrossRef]

Welsch, H.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, Phys. Rev. Lett. 101, 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, Phys. Rev. Lett. 96, 077403 (2006).
[CrossRef] [PubMed]

Wong, S. S.

S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, Nature 394, 52 (1998).
[CrossRef] [PubMed]

Woolley, A. T.

S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, Nature 394, 52 (1998).
[CrossRef] [PubMed]

Yaish, Y.

V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature 431, 284 (2004).
[CrossRef] [PubMed]

Zhang, K.

K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer Verlag, 1998).

Zhong, Z. H.

Z. H. Zhong, N. M. Gabor, J. E. Sharping, A. L. Gaeta, and P. L. McEuen, Nat. Nanotechnol. 3, 201 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

G. S. Huang, S. Kiravittaya, V. A. B. Quinones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, Appl. Phys. Lett. 94, 141901 (2009).
[CrossRef]

C. Deneke, N. Y. Jin-Phillipp, I. Loa, and O. G. Schmidt, Appl. Phys. Lett. 84, 4475 (2004).
[CrossRef]

C. Deneke and O. G. Schmidt, Appl. Phys. Lett. 85, 2914 (2004).
[CrossRef]

S. Vicknesh, F. Li, and Z. Mi, Appl. Phys. Lett. 94, 081101 (2009).
[CrossRef]

M. Hosoda and T. Shigaki, Appl. Phys. Lett. 90, 181107 (2007).
[CrossRef]

Microelectron. Eng. (1)

A. V. Prinz, V. Y. Prinz, and V. A. Seleznev, Microelectron. Eng. 67-68, 782 (2003).
[CrossRef]

Nat. Nanotechnol. (1)

Z. H. Zhong, N. M. Gabor, J. E. Sharping, A. L. Gaeta, and P. L. McEuen, Nat. Nanotechnol. 3, 201 (2008).
[CrossRef] [PubMed]

Nature (4)

S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, Nature 394, 52 (1998).
[CrossRef] [PubMed]

V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature 431, 284 (2004).
[CrossRef] [PubMed]

S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998).
[CrossRef]

O. G. Schmidt and K. Eberl, Nature 410, 168 (2001).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, Phys. Rev. Lett. 101, 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, C. Strelow, C. Heyn, and D. Heitmann, Phys. Rev. Lett. 96, 077403 (2006).
[CrossRef] [PubMed]

Physica E (Amsterdam) (2)

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, Physica E (Amsterdam) 6, 828 (2000).
[CrossRef]

C. Deneke and O. G. Schmidt, Physica E (Amsterdam) 23, 269 (2004).
[CrossRef]

Other (1)

K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer Verlag, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Illustrations of the InGaAs/GaAs quantum dot heterostructure grown on GaAs (inset) and the formation of InGaAs/GaAs quantum dot microtubes. (b) SEM image of a quantum dot microtube, wherein the etched GaAs, unetched (as-grown) InGaAs/GaAs quantum dot layer, and rolled-up InGaAs/GaAs quantum dot microtube are identified. The 10 kV cathodoluminescence micrograph acquired at 1040 nm at 100 K is shown in the inset.

Fig. 2
Fig. 2

(a) SEM image of the free-standing region of a single-walled quantum dot microtube. The sinusoidal surface geometry can be clearly seen. (b) Cross-sectional SEM image of a microtube.

Fig. 3
Fig. 3

(a) Room temperature photoluminescence spectrum (lower graph) and calculated spectral eigenmodes (upper graph) of a single-walled quantum dot microtube ring resonator. Solid lines, calculated dispersion curves for the first three transverse optical modes ( p = 0 , 1, 2) using an equivalent planar dielectric waveguide model; dashed lines, resonance conditions ( β = 2 π m / L ) for various azimuthal modes ( m = 25 , 26, 27, 28, 29, and 30). The intersections between the solid and dashed lines correspond to the cavity eigenmodes. (b) SEM image of the quantum dot microtube (right) and schematic of the equivalent planar dielectric waveguide model (left). The simulated azimuthal optical mode distribution for a simple ring resonator of the same diameter is also illustrated along the waveguide.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 n eff ( z ) 2 [ 2 E ( l , z ) z 2 + 2 E ( l , z ) l 2 ] = k 2 E ( l , z ) ,
d 2 ϕ ( z ) d z 2 n eff ( z ) 2 k 2 ϕ ( z ) = β 2 ϕ ( z ) .

Metrics