Abstract

A single-mode evanescently coupled multicore fiber consisting of 19 hexagonally arranged cores is investigated. Theoretical and experimental results are presented and compared to an equivalent hypothetical step-index fiber. A fundamental mode with an effective area of 465μm2 and a beam propagation factor M2 of 1.02 was measured, showing the high potential of the developed fiber.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen, Proc. IEEE 68, 1232 (1980).
    [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  3. J. C. Knight, Nature 424, 847 (2003).
    [CrossRef] [PubMed]
  4. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, Opt. Lett. 30, 2855 (2005).
    [CrossRef] [PubMed]
  5. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photonics Rev. 2, 429 (2008).
    [CrossRef]
  6. Y. Huo and K. Peter, J. Opt. Soc. Am. B 22, 2345 (2005).
    [CrossRef]
  7. U. Röpke, H. Bartelt, S. Unger, K. Schuster, and J. Kobelke, Opt. Express 15, 6894 (2007).
    [CrossRef] [PubMed]
  8. COMSOL Multiphysics, www.comsol.com.
  9. J.-P. Berenger, J. Comput. Phys. 127, 363 (1996).
    [CrossRef]
  10. D. M. Shyroki, IEEE Trans. Microwave Theory Tech. 56, 414 (2008).
    [CrossRef]
  11. D. Marcuse, J. Opt. Soc. Am. 66, 216 (1976).
    [CrossRef]

2008

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photonics Rev. 2, 429 (2008).
[CrossRef]

D. M. Shyroki, IEEE Trans. Microwave Theory Tech. 56, 414 (2008).
[CrossRef]

2007

2005

2003

J. C. Knight, Nature 424, 847 (2003).
[CrossRef] [PubMed]

1996

J.-P. Berenger, J. Comput. Phys. 127, 363 (1996).
[CrossRef]

1995

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

1980

R. H. Stolen, Proc. IEEE 68, 1232 (1980).
[CrossRef]

1976

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Bartelt, H.

Berenger, J. -P.

J.-P. Berenger, J. Comput. Phys. 127, 363 (1996).
[CrossRef]

Dong, L.

Fini, J. M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photonics Rev. 2, 429 (2008).
[CrossRef]

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photonics Rev. 2, 429 (2008).
[CrossRef]

Huo, Y.

Knight, J. C.

J. C. Knight, Nature 424, 847 (2003).
[CrossRef] [PubMed]

Kobelke, J.

Marcuse, D.

McLaughlin, J. M.

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photonics Rev. 2, 429 (2008).
[CrossRef]

Nicholson, J. W.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photonics Rev. 2, 429 (2008).
[CrossRef]

Peng, X.

Peter, K.

Ramachandran, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photonics Rev. 2, 429 (2008).
[CrossRef]

Röpke, U.

Schuster, K.

Shyroki, D. M.

D. M. Shyroki, IEEE Trans. Microwave Theory Tech. 56, 414 (2008).
[CrossRef]

Stolen, R. H.

R. H. Stolen, Proc. IEEE 68, 1232 (1980).
[CrossRef]

Unger, S.

Wong, W. S.

Yan, M. F.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photonics Rev. 2, 429 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

D. M. Shyroki, IEEE Trans. Microwave Theory Tech. 56, 414 (2008).
[CrossRef]

J. Comput. Phys.

J.-P. Berenger, J. Comput. Phys. 127, 363 (1996).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Laser Photonics Rev.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, Laser Photonics Rev. 2, 429 (2008).
[CrossRef]

Nature

J. C. Knight, Nature 424, 847 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. IEEE

R. H. Stolen, Proc. IEEE 68, 1232 (1980).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

COMSOL Multiphysics, www.comsol.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fiber end face: microscope photograph of the fiber end face and a SEM picture of the core region of an SM fiber consisting of 19 evanescently coupled cores.

Fig. 2
Fig. 2

NF and FF, calculated and measured intensity distributions of the NF (left) and FF (right) of the investigated 19-core fiber. Linescans along the x and y axes are plotted as solid curves, Gaussian fits as dotted curves.

Fig. 3
Fig. 3

Caustic measurement: determination of the beam quality from the measured caustic after the 19-core transport fiber. The measurement in two orthogonal directions [green (cross)/red (plus)] revealed M 2 factors of M x 2 = M y 2 = 1.02 and an eccentricity of 1.03.

Fig. 4
Fig. 4

Bending loss: measured [blue (solid) circles] and calculated (open circles) bend-induced losses of the 19-core fiber compared to a hypothetical SM SIF (open squares) with the same MFA at R = .

Fig. 5
Fig. 5

MFA: comparison of the calculated MFA of an SM 19-core fiber and a comparable SM SIF depending on the fiber bending radius R. The NF distributions for a bending radius of R = 0.2   m are shown in the insets.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A eff = ( E E d A ) 2 ( E E ) 2 d A
n R = n ( 1 + 2 x / R ) ,

Metrics