Abstract

This research investigated the feasibility of employing beam-profile-adapted optical feedback to conduct commercial multi-transverse-mode vertical-cavity surface-emitting lasers (VCSELs) to emit a single transverse mode with a wide tuning range. Experimentally, for a VCSEL with its solitary spectrum consisting of almost no fundamental transverse mode, the fundamental transverse mode could be conducted to lase with a tuning range of about 1285 GHz and side-mode suppression ratio of around 20 dB. These results can greatly enhance the performance of VCSELs in many applications.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Semiconductor Lasers: Past, Present and Future (AIP, 1995).
  2. H. Li and K. Iga, Vertical-Cavity Surface-Emitting Lasers (Springer, 2003).
  3. D. Zhou and L. J. Mawst, IEEE J. Quantum Electron. 38, 1599 (2002).
    [CrossRef]
  4. A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, Appl. Phys. Lett. 85, 5161 (2004).
    [CrossRef]
  5. J. W. Shi, C. C. Chen, Y. S. Wu, S. H. Guol, C. Kuo, and Y. J. Yang, IEEE Photon. Technol. Lett. 20, 1121 (2008).
    [CrossRef]
  6. J. Dellunde, A. Valle, and K. A. Shore, J. Opt. Soc. Am. B 13, 2477 (1996).
    [CrossRef]
  7. J. Y. Law and G. P. Agrawal, IEEE J. Sel. Top. Quantum Electron. 3, 353 (1997).
    [CrossRef]
  8. F. Marino, S. Barland, and S. Balle, IEEE Photon. Technol. Lett. 15, 789 (2003).
    [CrossRef]
  9. Y. Tanguy, T. Ackemann, and R. Jager, Phys. Rev. A 74, 053824 (2006).
    [CrossRef]
  10. D. L. Cheng, E. C. Liu, and T. C. Yen, IEEE Photon. Technol. Lett. 16, 278 (2004).
    [CrossRef]
  11. H. Chen and G. W. Schinn, Opt. Lett. 30, 1006 (2005).
    [CrossRef] [PubMed]
  12. H. Lin and H. M. Hlaing, Opt. Commun. 274, 130 (2007).
    [CrossRef]
  13. J. Prawiharjo, N. K. Daga, R. Geng, J. H. V. Price, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, Opt. Express 16, 15074 (2008).
    [CrossRef] [PubMed]
  14. N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard, and B. Loiseaux, Opt. Lett. 30, 1479 (2005).
    [CrossRef] [PubMed]
  15. A. A. Adeyemi, N. Barakat, and T. E. Darcie, Opt. Express 17, 1831 (2009).
    [CrossRef] [PubMed]
  16. X. Gao, H. Ohashi, H. Okamoto, M. Takasaka, and K. Shinoda, Opt. Lett. 31, 1654 (2006).
    [CrossRef] [PubMed]

2009 (1)

2008 (2)

J. Prawiharjo, N. K. Daga, R. Geng, J. H. V. Price, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, Opt. Express 16, 15074 (2008).
[CrossRef] [PubMed]

J. W. Shi, C. C. Chen, Y. S. Wu, S. H. Guol, C. Kuo, and Y. J. Yang, IEEE Photon. Technol. Lett. 20, 1121 (2008).
[CrossRef]

2007 (1)

H. Lin and H. M. Hlaing, Opt. Commun. 274, 130 (2007).
[CrossRef]

2006 (2)

2005 (2)

2004 (2)

D. L. Cheng, E. C. Liu, and T. C. Yen, IEEE Photon. Technol. Lett. 16, 278 (2004).
[CrossRef]

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, Appl. Phys. Lett. 85, 5161 (2004).
[CrossRef]

2003 (2)

H. Li and K. Iga, Vertical-Cavity Surface-Emitting Lasers (Springer, 2003).

F. Marino, S. Barland, and S. Balle, IEEE Photon. Technol. Lett. 15, 789 (2003).
[CrossRef]

2002 (1)

D. Zhou and L. J. Mawst, IEEE J. Quantum Electron. 38, 1599 (2002).
[CrossRef]

1997 (1)

J. Y. Law and G. P. Agrawal, IEEE J. Sel. Top. Quantum Electron. 3, 353 (1997).
[CrossRef]

1996 (1)

1995 (1)

G. P. Agrawal, Semiconductor Lasers: Past, Present and Future (AIP, 1995).

Ackemann, T.

Y. Tanguy, T. Ackemann, and R. Jager, Phys. Rev. A 74, 053824 (2006).
[CrossRef]

Adeyemi, A. A.

Agrawal, G. P.

J. Y. Law and G. P. Agrawal, IEEE J. Sel. Top. Quantum Electron. 3, 353 (1997).
[CrossRef]

G. P. Agrawal, Semiconductor Lasers: Past, Present and Future (AIP, 1995).

Audouard, E.

Baba, T.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, Appl. Phys. Lett. 85, 5161 (2004).
[CrossRef]

Balle, S.

F. Marino, S. Barland, and S. Balle, IEEE Photon. Technol. Lett. 15, 789 (2003).
[CrossRef]

Barakat, N.

Barland, S.

F. Marino, S. Barland, and S. Balle, IEEE Photon. Technol. Lett. 15, 789 (2003).
[CrossRef]

Chen, C. C.

J. W. Shi, C. C. Chen, Y. S. Wu, S. H. Guol, C. Kuo, and Y. J. Yang, IEEE Photon. Technol. Lett. 20, 1121 (2008).
[CrossRef]

Chen, H.

Cheng, D. L.

D. L. Cheng, E. C. Liu, and T. C. Yen, IEEE Photon. Technol. Lett. 16, 278 (2004).
[CrossRef]

Daga, N. K.

Darcie, T. E.

Dellunde, J.

Furukawa, A.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, Appl. Phys. Lett. 85, 5161 (2004).
[CrossRef]

Gao, X.

Geng, R.

Guol, S. H.

J. W. Shi, C. C. Chen, Y. S. Wu, S. H. Guol, C. Kuo, and Y. J. Yang, IEEE Photon. Technol. Lett. 20, 1121 (2008).
[CrossRef]

Hanna, D. C.

Hlaing, H. M.

H. Lin and H. M. Hlaing, Opt. Commun. 274, 130 (2007).
[CrossRef]

Hoshi, M.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, Appl. Phys. Lett. 85, 5161 (2004).
[CrossRef]

Huignard, J. P.

Huot, N.

Iga, K.

H. Li and K. Iga, Vertical-Cavity Surface-Emitting Lasers (Springer, 2003).

Jager, R.

Y. Tanguy, T. Ackemann, and R. Jager, Phys. Rev. A 74, 053824 (2006).
[CrossRef]

Kuo, C.

J. W. Shi, C. C. Chen, Y. S. Wu, S. H. Guol, C. Kuo, and Y. J. Yang, IEEE Photon. Technol. Lett. 20, 1121 (2008).
[CrossRef]

Larat, C.

Law, J. Y.

J. Y. Law and G. P. Agrawal, IEEE J. Sel. Top. Quantum Electron. 3, 353 (1997).
[CrossRef]

Li, H.

H. Li and K. Iga, Vertical-Cavity Surface-Emitting Lasers (Springer, 2003).

Lin, H.

H. Lin and H. M. Hlaing, Opt. Commun. 274, 130 (2007).
[CrossRef]

Liu, E. C.

D. L. Cheng, E. C. Liu, and T. C. Yen, IEEE Photon. Technol. Lett. 16, 278 (2004).
[CrossRef]

Loiseaux, B.

Marino, F.

F. Marino, S. Barland, and S. Balle, IEEE Photon. Technol. Lett. 15, 789 (2003).
[CrossRef]

Matsuzono, A.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, Appl. Phys. Lett. 85, 5161 (2004).
[CrossRef]

Mawst, L. J.

D. Zhou and L. J. Mawst, IEEE J. Quantum Electron. 38, 1599 (2002).
[CrossRef]

Moritoh, K.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, Appl. Phys. Lett. 85, 5161 (2004).
[CrossRef]

Ohashi, H.

Okamoto, H.

Prawiharjo, J.

Price, J. H. V.

Richardson, D. J.

Sanner, N.

Sasaki, S.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, Appl. Phys. Lett. 85, 5161 (2004).
[CrossRef]

Schinn, G. W.

Shepherd, D. P.

Shi, J. W.

J. W. Shi, C. C. Chen, Y. S. Wu, S. H. Guol, C. Kuo, and Y. J. Yang, IEEE Photon. Technol. Lett. 20, 1121 (2008).
[CrossRef]

Shinoda, K.

Shore, K. A.

Takasaka, M.

Tanguy, Y.

Y. Tanguy, T. Ackemann, and R. Jager, Phys. Rev. A 74, 053824 (2006).
[CrossRef]

Valle, A.

Wu, Y. S.

J. W. Shi, C. C. Chen, Y. S. Wu, S. H. Guol, C. Kuo, and Y. J. Yang, IEEE Photon. Technol. Lett. 20, 1121 (2008).
[CrossRef]

Yang, Y. J.

J. W. Shi, C. C. Chen, Y. S. Wu, S. H. Guol, C. Kuo, and Y. J. Yang, IEEE Photon. Technol. Lett. 20, 1121 (2008).
[CrossRef]

Yen, T. C.

D. L. Cheng, E. C. Liu, and T. C. Yen, IEEE Photon. Technol. Lett. 16, 278 (2004).
[CrossRef]

Zhou, D.

D. Zhou and L. J. Mawst, IEEE J. Quantum Electron. 38, 1599 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, Appl. Phys. Lett. 85, 5161 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Zhou and L. J. Mawst, IEEE J. Quantum Electron. 38, 1599 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Y. Law and G. P. Agrawal, IEEE J. Sel. Top. Quantum Electron. 3, 353 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

F. Marino, S. Barland, and S. Balle, IEEE Photon. Technol. Lett. 15, 789 (2003).
[CrossRef]

D. L. Cheng, E. C. Liu, and T. C. Yen, IEEE Photon. Technol. Lett. 16, 278 (2004).
[CrossRef]

J. W. Shi, C. C. Chen, Y. S. Wu, S. H. Guol, C. Kuo, and Y. J. Yang, IEEE Photon. Technol. Lett. 20, 1121 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

H. Lin and H. M. Hlaing, Opt. Commun. 274, 130 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (1)

Y. Tanguy, T. Ackemann, and R. Jager, Phys. Rev. A 74, 053824 (2006).
[CrossRef]

Other (2)

G. P. Agrawal, Semiconductor Lasers: Past, Present and Future (AIP, 1995).

H. Li and K. Iga, Vertical-Cavity Surface-Emitting Lasers (Springer, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: L1, L2, L3, lenses; LP, linear polarizer; BS1, BS2, BS3, beam splitters; M1, M2, M3, mirrors; SMF, single-mode fiber; PC, polarization controller; ND, neutral density filter; PD, 1 GHz fast photodetector.

Fig. 2
Fig. 2

(a) Polarization-resolved L-I curves and beam profiles of the solitary VCSEL. (b) Transverse modal spectra of the solitary VCSEL at 3 mA [curves (1) and (2)], and 10 mA [curves (3) and (4)]. The upper two spectra are magnified by a factor of 2. The black curves and gray curves correspond to X and Y polarization, respectively. The spectra are aligned according to the optical frequency of each mode.

Fig. 3
Fig. 3

Laser output before BPAF (top two rows) and after BPAF (bottom two rows) at the laser current of 5 mA. The third row is the output of the single-mode fiber. Left column, transverse modal spectra; central column, beam profiles; right column, cross sections of beam profiles (1 mm/div). The spectra are aligned according to the optical frequency of each mode with some spectra magnified to make the comparison clear. The black curves and gray curves correspond to X and Y polarization, respectively.

Fig. 4
Fig. 4

(a) Variation of SMSR with the laser’s currents under X and Y polarization BPAF. The feedback ratios were about −13 and −23 dB for the X and Y polarization, respectively. The insertion is the rf spectrum of the laser’s intensity at 5 mA under X-polarization BPAF. (b) Variation of SMSR with the feedback ratio under X and Y polarization BPAF at the laser’s current of 5 mA.

Fig. 5
Fig. 5

Variation of SMSR with the laser’s currents under X- and Y-polarization BPAF while an iris of 3.5 mm in diameter was installed in the optical path. The insertion is the transverse modal spectrum at 20 mA under Y-polarization BPAF without iris. For this VCSEL, 20 mA was the maximum rating current without any significant alteration of the laser’s characteristics. The feedback ratios were the same as those in Fig. 4a.

Metrics