Abstract

By using an electro-optic sampling technique, the instantaneous field vector of the terahertz (THz) pulse generated by mixing a near-IR femtosecond pulse and its second harmonic in air has been studied. The polarization of the investigated THz pulse is found to be predominantly linear and orthogonal to that of the second harmonic, revealing the major role of χxyxy(3) during the four-wave mixing process.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Cook and R. M. Hochstrasser, Opt. Lett. 25, 1210 (2000).
    [CrossRef]
  2. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photonics 2, 60 (2008).
    [CrossRef]
  3. T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, Opt. Lett. 30, 2805 (2005).
    [CrossRef] [PubMed]
  4. M. Kress, T. Loffler, S. Eden, M. Thomson, and H. G. Roskos, Opt. Lett. 29, 1120 (2004).
    [CrossRef] [PubMed]
  5. X. Xie, J. M. Dai, and X. C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).
    [CrossRef] [PubMed]
  6. A. Houard, Y. Liu, B. Prade, and A. Mysyrowicz, Opt. Lett. 33, 1195 (2008).
    [CrossRef] [PubMed]
  7. M. D. Thomson, M. Kress, T. Loffler, and H. G. Roskos, Laser Photonics Rev. 1, 349 (2007).
    [CrossRef]
  8. Q. Wu and X. C. Zhang, Appl. Phys. Lett. 67, 3523 (1995).
    [CrossRef]
  9. P. C. M. Planken, H. K. Nienhuys, H. J. Bakker, and T. Wenckebach, J. Opt. Soc. Am. B 18, 313 (2001).
    [CrossRef]
  10. Y. Chen, C. Marceau, W. Liu, Z.-D. Sun, Y. Zhang, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, Appl. Phys. Lett. 93, 231116 (2008).
    [CrossRef]

2008 (3)

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photonics 2, 60 (2008).
[CrossRef]

A. Houard, Y. Liu, B. Prade, and A. Mysyrowicz, Opt. Lett. 33, 1195 (2008).
[CrossRef] [PubMed]

Y. Chen, C. Marceau, W. Liu, Z.-D. Sun, Y. Zhang, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, Appl. Phys. Lett. 93, 231116 (2008).
[CrossRef]

2007 (1)

M. D. Thomson, M. Kress, T. Loffler, and H. G. Roskos, Laser Photonics Rev. 1, 349 (2007).
[CrossRef]

2006 (1)

X. Xie, J. M. Dai, and X. C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

2001 (1)

2000 (1)

1995 (1)

Q. Wu and X. C. Zhang, Appl. Phys. Lett. 67, 3523 (1995).
[CrossRef]

Bakker, H. J.

Bartel, T.

Chateauneuf, M.

Y. Chen, C. Marceau, W. Liu, Z.-D. Sun, Y. Zhang, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, Appl. Phys. Lett. 93, 231116 (2008).
[CrossRef]

Chen, Y.

Y. Chen, C. Marceau, W. Liu, Z.-D. Sun, Y. Zhang, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, Appl. Phys. Lett. 93, 231116 (2008).
[CrossRef]

Chin, S. L.

Y. Chen, C. Marceau, W. Liu, Z.-D. Sun, Y. Zhang, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, Appl. Phys. Lett. 93, 231116 (2008).
[CrossRef]

Cook, D. J.

Dai, J. M.

X. Xie, J. M. Dai, and X. C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).
[CrossRef] [PubMed]

Dubois, J.

Y. Chen, C. Marceau, W. Liu, Z.-D. Sun, Y. Zhang, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, Appl. Phys. Lett. 93, 231116 (2008).
[CrossRef]

Eden, S.

Elsaesser, T.

Gaal, P.

Glownia, J. H.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photonics 2, 60 (2008).
[CrossRef]

Hochstrasser, R. M.

Houard, A.

Kim, K. Y.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photonics 2, 60 (2008).
[CrossRef]

Kress, M.

M. D. Thomson, M. Kress, T. Loffler, and H. G. Roskos, Laser Photonics Rev. 1, 349 (2007).
[CrossRef]

M. Kress, T. Loffler, S. Eden, M. Thomson, and H. G. Roskos, Opt. Lett. 29, 1120 (2004).
[CrossRef] [PubMed]

Liu, W.

Y. Chen, C. Marceau, W. Liu, Z.-D. Sun, Y. Zhang, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, Appl. Phys. Lett. 93, 231116 (2008).
[CrossRef]

Liu, Y.

Loffler, T.

M. D. Thomson, M. Kress, T. Loffler, and H. G. Roskos, Laser Photonics Rev. 1, 349 (2007).
[CrossRef]

M. Kress, T. Loffler, S. Eden, M. Thomson, and H. G. Roskos, Opt. Lett. 29, 1120 (2004).
[CrossRef] [PubMed]

Marceau, C.

Y. Chen, C. Marceau, W. Liu, Z.-D. Sun, Y. Zhang, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, Appl. Phys. Lett. 93, 231116 (2008).
[CrossRef]

Mysyrowicz, A.

Nienhuys, H. K.

Planken, P. C. M.

Prade, B.

Reimann, K.

Rodriguez, G.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photonics 2, 60 (2008).
[CrossRef]

Roskos, H. G.

M. D. Thomson, M. Kress, T. Loffler, and H. G. Roskos, Laser Photonics Rev. 1, 349 (2007).
[CrossRef]

M. Kress, T. Loffler, S. Eden, M. Thomson, and H. G. Roskos, Opt. Lett. 29, 1120 (2004).
[CrossRef] [PubMed]

Sun, Z.-D.

Y. Chen, C. Marceau, W. Liu, Z.-D. Sun, Y. Zhang, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, Appl. Phys. Lett. 93, 231116 (2008).
[CrossRef]

Taylor, A. J.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photonics 2, 60 (2008).
[CrossRef]

Theberge, F.

Y. Chen, C. Marceau, W. Liu, Z.-D. Sun, Y. Zhang, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, Appl. Phys. Lett. 93, 231116 (2008).
[CrossRef]

Thomson, M.

Thomson, M. D.

M. D. Thomson, M. Kress, T. Loffler, and H. G. Roskos, Laser Photonics Rev. 1, 349 (2007).
[CrossRef]

Wenckebach, T.

Woerner, M.

Wu, Q.

Q. Wu and X. C. Zhang, Appl. Phys. Lett. 67, 3523 (1995).
[CrossRef]

Xie, X.

X. Xie, J. M. Dai, and X. C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).
[CrossRef] [PubMed]

Zhang, X. C.

X. Xie, J. M. Dai, and X. C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).
[CrossRef] [PubMed]

Q. Wu and X. C. Zhang, Appl. Phys. Lett. 67, 3523 (1995).
[CrossRef]

Zhang, Y.

Y. Chen, C. Marceau, W. Liu, Z.-D. Sun, Y. Zhang, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, Appl. Phys. Lett. 93, 231116 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

Q. Wu and X. C. Zhang, Appl. Phys. Lett. 67, 3523 (1995).
[CrossRef]

Y. Chen, C. Marceau, W. Liu, Z.-D. Sun, Y. Zhang, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, Appl. Phys. Lett. 93, 231116 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

M. D. Thomson, M. Kress, T. Loffler, and H. G. Roskos, Laser Photonics Rev. 1, 349 (2007).
[CrossRef]

Nat. Photonics (1)

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photonics 2, 60 (2008).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

X. Xie, J. M. Dai, and X. C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup. The focused pump beam passes a BBO crystal, creating plasma at the focus. THz pulse is detected by a standard electric-optic sampling setup.

Fig. 2
Fig. 2

Coordinate systems defined in this work. The X axis and Y axis are parallel and perpendicular to the pump beam polarization, respectively. The x axis and y axis are the e axis and o axis of the BBO crystal, respectively. The polarization of the THz field is mainly parallel to the y axis.

Fig. 3
Fig. 3

Variation of E THz X (open circles) as a function of θ. The solid curve and the dashed curve are calculated according to Eqs. (5, 6), respectively. (b) The same as (a) for E THz Y . (c) The relationship between ϕ and θ. Open squares, experimental data; black line, linear fitting of ϕ = θ−90°.

Fig. 4
Fig. 4

THz electric field trajectories (solid squares) and its predominant polarization direction (dashed line) used for measuring ϕ. Inset, electric field waveform of E THz X (solid circles) and E THz Y (open triangles), respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E THz i j k l χ i j k l ( 3 ) E SH j E ω k E ω l ( i , j , k , l = x , y ) .
E THz y k l χ y x k l ( 3 ) E SH x E ω k E ω l ( k , l = x , y ) .
E THz y χ y x y x ( 3 ) E SH x E ω y E ω x .
E THz y = a E ω 4 sin 3 θ cos θ ,
E THz X = E THz y cos ( θ 90 ° ) = a E ω 4 sin 3 θ cos θ cos ( θ 90 ° ) ,
E THz Y = E THz y sin ( θ 90 ° ) = a E ω 4 sin 3 θ cos θ sin ( θ 90 ° ) .
E THz x = χ x x x x ( 3 ) E SH x E ω x E ω x ,
E THz X = χ x x x x ( 3 ) E SH x E ω x E ω x sin θ + ( χ y x y x ( 3 ) + χ y x x y ( 3 ) ) E SH x E ω y E ω x cos ( θ 90 ° ) ,
E THz Y = χ x x x x ( 3 ) E SH x E ω x E ω x cos θ + ( χ y x y x ( 3 ) + χ y x x y ( 3 ) ) E SH x E ω y E ω x sin ( θ 90 ° ) ,

Metrics