Abstract

We show here that through an adaptive deformation of digital holograms it is possible to manage the depth of focus in 3D imaging reconstruction. Deformation is applied to the original hologram with the aim to put simultaneously in focus, and in one reconstructed image plane, different objects lying at different distances from the hologram plane (i.e., CCD sensor). In the same way, by adapting the deformation it is possible to extend the depth of field having a tilted object entirely in focus. We demonstrate the method in both lensless as well as in microscope configuration.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Digital Holography and Three-Dimensional Display: Principles and Applications, T.-C.Poon, ed., (Springer, 2006).
    [CrossRef]
  2. V. Micó, J. García, Z. Zalevsky, and B. Javidi, Opt. Lett. 34, 1492 (2009).
    [CrossRef] [PubMed]
  3. Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, Opt. Lett. 34, 1276 (2009).
    [CrossRef] [PubMed]
  4. T. Kim, Y. S. Kim, W. S. Kim, and T.-C. Poon, Opt. Lett. 34, 1231 (2009).
    [CrossRef] [PubMed]
  5. M. Kanka, R. Riesenberg, and H. J. Kreuzer, Opt. Lett. 34, 1162 (2009).
    [CrossRef] [PubMed]
  6. D. Wang, J. Zhao, F. Zhang, G. Pedrini, and W. Osten, Appl. Opt. 47, D12 (2008).
    [CrossRef] [PubMed]
  7. Y. S. Hwang, S.-H. Hong, and B. Javidi, J. Disp. Technol. 3, 64 (2007).
    [CrossRef]
  8. Y. Takaki and H. Ohzu, Appl. Opt. 39, 5302 (2000).
    [CrossRef]
  9. E. Malkiel, J. N. Abras, and J. Katz, Meas. Sci. Technol. 15, 601 (2004).
    [CrossRef]
  10. P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, Opt. Lett. 28, 1257 (2003).
    [CrossRef] [PubMed]
  11. M. Antkowiak, N. Callens, C. Yourassowsky, and F. Dubois, Opt. Lett. 33, 1626 (2008).
    [CrossRef] [PubMed]
  12. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, Opt. Express 14, 5895 (2006).
    [CrossRef] [PubMed]
  13. M. Liebling and M. Unser, J. Opt. Soc. Am. A 21, 2424 (2004).
    [CrossRef]
  14. R. J. Pieper and A. Korpel, Appl. Opt. 22, 1449 (1983).
    [CrossRef] [PubMed]
  15. E. R. Dowski, Jr. and W. T. Cathey, Appl. Opt. 34, 1859 (1995).
    [CrossRef] [PubMed]
  16. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, Opt. Express 13, 6738 (2005).
    [CrossRef] [PubMed]
  17. S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, Opt. Express 13, 9935 (2005).
    [CrossRef] [PubMed]
  18. S. J. Jeong and C. K. Hong, Appl. Opt. 47, 3064 (2008).
    [CrossRef] [PubMed]
  19. K. Matsushima, Appl. Opt. 47, D110 (2008).
    [CrossRef] [PubMed]
  20. C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, Appl. Opt. 47, D71 (2008).
    [CrossRef] [PubMed]
  21. C. Do and B. Javidi, J. Disp. Technol. 3, 326 (2007).
    [CrossRef]

2009

2008

2007

C. Do and B. Javidi, J. Disp. Technol. 3, 326 (2007).
[CrossRef]

Y. S. Hwang, S.-H. Hong, and B. Javidi, J. Disp. Technol. 3, 64 (2007).
[CrossRef]

2006

F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, Opt. Express 14, 5895 (2006).
[CrossRef] [PubMed]

Digital Holography and Three-Dimensional Display: Principles and Applications, T.-C.Poon, ed., (Springer, 2006).
[CrossRef]

2005

2004

E. Malkiel, J. N. Abras, and J. Katz, Meas. Sci. Technol. 15, 601 (2004).
[CrossRef]

M. Liebling and M. Unser, J. Opt. Soc. Am. A 21, 2424 (2004).
[CrossRef]

2003

2000

1995

1983

Abras, J. N.

E. Malkiel, J. N. Abras, and J. Katz, Meas. Sci. Technol. 15, 601 (2004).
[CrossRef]

Alfieri, D.

Antkowiak, M.

Asundi, A.

Callens, N.

Cathey, W. T.

Choo, C. O.

Coppola, G.

De Nicola, S.

Do, C.

C. Do and B. Javidi, J. Disp. Technol. 3, 326 (2007).
[CrossRef]

Dowski, E. R.

Dubois, F.

Ferraro, P.

Finizio, A.

García, J.

Grilli, S.

Hennelly, B. M.

Hong, C. K.

Hong, S.-H.

Y. S. Hwang, S.-H. Hong, and B. Javidi, J. Disp. Technol. 3, 64 (2007).
[CrossRef]

Hwang, Y. S.

Y. S. Hwang, S.-H. Hong, and B. Javidi, J. Disp. Technol. 3, 64 (2007).
[CrossRef]

Javidi, B.

Jeong, S. J.

Kanka, M.

Katz, J.

E. Malkiel, J. N. Abras, and J. Katz, Meas. Sci. Technol. 15, 601 (2004).
[CrossRef]

Kim, T.

Kim, W. S.

Kim, Y. S.

Korpel, A.

Kreuzer, H. J.

Liebling, M.

Malkiel, E.

E. Malkiel, J. N. Abras, and J. Katz, Meas. Sci. Technol. 15, 601 (2004).
[CrossRef]

Matsushima, K.

McElhinney, C. P.

Micó, V.

Naughton, T. J.

Ohzu, H.

Osten, W.

Pedrini, G.

Pieper, R. J.

Pierattini, G.

Poon, T.-C.

Riesenberg, R.

Schockaert, C.

Striano, V.

Takaki, Y.

Unser, M.

Wang, D.

Weijuan, Q.

Yingjie, Y.

Yourassowsky, C.

Zalevsky, Z.

Zhang, F.

Zhao, J.

Appl. Opt.

J. Disp. Technol.

C. Do and B. Javidi, J. Disp. Technol. 3, 326 (2007).
[CrossRef]

Y. S. Hwang, S.-H. Hong, and B. Javidi, J. Disp. Technol. 3, 64 (2007).
[CrossRef]

J. Opt. Soc. Am. A

Meas. Sci. Technol.

E. Malkiel, J. N. Abras, and J. Katz, Meas. Sci. Technol. 15, 601 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Other

Digital Holography and Three-Dimensional Display: Principles and Applications, T.-C.Poon, ed., (Springer, 2006).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (6875 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Reconstruction of a digital hologram as recorded (no stretching) at different distances: (a) 100 mm , (b) 125 mm , and (c) 150 mm . For α = 1.1 the horizontal wire is in focus at (d) 150 mm , and for α = 1.22 the curved wire is in focus at (e) 150 mm . (f) Conceptual draw of the stretching.

Fig. 2
Fig. 2

(a) Hologram as recorded and (b) with local deformation, (c) moiré beating between the two holograms, (d) reconstruction of hologram in (b) with the horizontal wire and the eyelet in focus.

Fig. 3
Fig. 3

(a) Reconstruction at 100 mm for the original hologram. (b) Reconstruction of the adaptively deformed hologram. (c) Phase difference.

Fig. 4
Fig. 4

Quadratic deformation applied along the x axis to an hologram of a tilted object. (a) First frame from the video showing how EFI is get by the adaptively deformation (Media 1). (b) EFI image. (c) Phase difference.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

b ( x , y ) = 1 i λ d h ( ξ , η ) r ( ξ , η ) e i k d [ 1 + ( x ξ ) 2 2 d 2 + ( y η ) 2 2 d 2 ] d ξ d η ,
T = [ α 0 0 α 0 0 ] ,
B ( x , y , d ) = 1 i λ d e i k d h ( α ξ , α η ) e i k α 2 ( x ξ ) 2 2 d α 2 e i k α 2 ( y η ) 2 2 d α 2 d ξ d η = 1 i α 2 λ d e i k d h ( ξ , η ) e i k ( x ξ ) 2 2 D e i k ( y η ) 2 2 D d ξ d η = 1 α 2 b ( x , y , D ) .
T = [ 0 0 1 0 0 1 0 0 β 0 0 γ ] .

Metrics