Abstract

We demonstrate the coherent control of ultrafast shift currents in GaAs with two orthogonally polarized linearly chirped laser pulses. By varying the chirp and phase delay between the pulses, we achieve the control of the shape of the shift current transients in a wide range from a monopolar shape to different bipolar shapes (alternating currents). Moreover, the terahertz emission patterns resulting from the ultrafast shift currents allow one to determine the sign of the chirp of the laser pulses.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
    [CrossRef] [PubMed]
  2. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 2nd ed. (Springer, 1999).
  3. L. Costa, M. Betz, M. Spacenović, A. D. Bristow, and H. M. van Driel, Nat. Phys. 3, 632 (2007).
    [CrossRef]
  4. M. Bieler, K. Pierz, U. Siegner, and P. Dawson, Phys. Rev. B 73, 241312(R) (2006).
    [CrossRef]
  5. J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, Science 318, 1287 (2007).
    [CrossRef] [PubMed]
  6. M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, Phys. Rev. Lett. 90, 136603 (2003).
    [CrossRef] [PubMed]
  7. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, Opt. Lett. 15, 326 (1990).
    [CrossRef] [PubMed]
  8. J. Ahn, A. V. Efimov, R. D. Averitt, and A. T. Taylor, Opt. Express 11, 1486 (2003).
    [CrossRef]
  9. F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, Opt. Lett. 25, 1472 (2000).
    [CrossRef]
  10. J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337 (2000).
    [CrossRef]
  11. M. Bieler, K. Pierz, and U. Siegner, J. Appl. Phys. 100, 083710 (2006).
    [CrossRef]
  12. M. Bieler, IEEE J. Sel. Top. Quantum Electron. 14, 458 (2008).
    [CrossRef]
  13. C. Sames, J.-M. Ménard, M. Betz, A. L. Smirl, and H. M. van Driel, Phys. Rev. B 79, 045208 (2009); a similar emission pattern was used to identify AC injection currents that result from quantum interference between one- and two-photon absorption processes.
    [CrossRef]

2009 (1)

C. Sames, J.-M. Ménard, M. Betz, A. L. Smirl, and H. M. van Driel, Phys. Rev. B 79, 045208 (2009); a similar emission pattern was used to identify AC injection currents that result from quantum interference between one- and two-photon absorption processes.
[CrossRef]

2008 (1)

M. Bieler, IEEE J. Sel. Top. Quantum Electron. 14, 458 (2008).
[CrossRef]

2007 (2)

L. Costa, M. Betz, M. Spacenović, A. D. Bristow, and H. M. van Driel, Nat. Phys. 3, 632 (2007).
[CrossRef]

J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, Science 318, 1287 (2007).
[CrossRef] [PubMed]

2006 (2)

M. Bieler, K. Pierz, U. Siegner, and P. Dawson, Phys. Rev. B 73, 241312(R) (2006).
[CrossRef]

M. Bieler, K. Pierz, and U. Siegner, J. Appl. Phys. 100, 083710 (2006).
[CrossRef]

2003 (2)

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, Phys. Rev. Lett. 90, 136603 (2003).
[CrossRef] [PubMed]

J. Ahn, A. V. Efimov, R. D. Averitt, and A. T. Taylor, Opt. Express 11, 1486 (2003).
[CrossRef]

2000 (2)

1999 (1)

J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 2nd ed. (Springer, 1999).

1993 (1)

W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

1990 (1)

Ahn, J.

J. Ahn, A. V. Efimov, R. D. Averitt, and A. T. Taylor, Opt. Express 11, 1486 (2003).
[CrossRef]

Averitt, R. D.

J. Ahn, A. V. Efimov, R. D. Averitt, and A. T. Taylor, Opt. Express 11, 1486 (2003).
[CrossRef]

Betz, M.

C. Sames, J.-M. Ménard, M. Betz, A. L. Smirl, and H. M. van Driel, Phys. Rev. B 79, 045208 (2009); a similar emission pattern was used to identify AC injection currents that result from quantum interference between one- and two-photon absorption processes.
[CrossRef]

L. Costa, M. Betz, M. Spacenović, A. D. Bristow, and H. M. van Driel, Nat. Phys. 3, 632 (2007).
[CrossRef]

Bhat, R. D. R.

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, Phys. Rev. Lett. 90, 136603 (2003).
[CrossRef] [PubMed]

Bieler, M.

M. Bieler, IEEE J. Sel. Top. Quantum Electron. 14, 458 (2008).
[CrossRef]

M. Bieler, K. Pierz, and U. Siegner, J. Appl. Phys. 100, 083710 (2006).
[CrossRef]

M. Bieler, K. Pierz, U. Siegner, and P. Dawson, Phys. Rev. B 73, 241312(R) (2006).
[CrossRef]

Bristow, A. D.

L. Costa, M. Betz, M. Spacenović, A. D. Bristow, and H. M. van Driel, Nat. Phys. 3, 632 (2007).
[CrossRef]

Costa, L.

L. Costa, M. Betz, M. Spacenović, A. D. Bristow, and H. M. van Driel, Nat. Phys. 3, 632 (2007).
[CrossRef]

Dahleh, M.

W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

Dawson, P.

M. Bieler, K. Pierz, U. Siegner, and P. Dawson, Phys. Rev. B 73, 241312(R) (2006).
[CrossRef]

Efimov, A. V.

J. Ahn, A. V. Efimov, R. D. Averitt, and A. T. Taylor, Opt. Express 11, 1486 (2003).
[CrossRef]

Eickemeyer, F.

Elsaesser, T.

Güdde, J.

J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, Science 318, 1287 (2007).
[CrossRef] [PubMed]

Höfer, U.

J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, Science 318, 1287 (2007).
[CrossRef] [PubMed]

Kaindl, R. A.

Koch, S. W.

J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, Science 318, 1287 (2007).
[CrossRef] [PubMed]

Leaird, D. E.

Meier, T.

J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, Science 318, 1287 (2007).
[CrossRef] [PubMed]

Ménard, J.-M.

C. Sames, J.-M. Ménard, M. Betz, A. L. Smirl, and H. M. van Driel, Phys. Rev. B 79, 045208 (2009); a similar emission pattern was used to identify AC injection currents that result from quantum interference between one- and two-photon absorption processes.
[CrossRef]

Najmaie, A.

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, Phys. Rev. Lett. 90, 136603 (2003).
[CrossRef] [PubMed]

Patel, J. S.

Pierz, K.

M. Bieler, K. Pierz, U. Siegner, and P. Dawson, Phys. Rev. B 73, 241312(R) (2006).
[CrossRef]

M. Bieler, K. Pierz, and U. Siegner, J. Appl. Phys. 100, 083710 (2006).
[CrossRef]

Rabitz, H.

W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

Rohleder, M.

J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, Science 318, 1287 (2007).
[CrossRef] [PubMed]

Sames, C.

C. Sames, J.-M. Ménard, M. Betz, A. L. Smirl, and H. M. van Driel, Phys. Rev. B 79, 045208 (2009); a similar emission pattern was used to identify AC injection currents that result from quantum interference between one- and two-photon absorption processes.
[CrossRef]

Shah, J.

J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 2nd ed. (Springer, 1999).

Shkrebtii, A. I.

J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337 (2000).
[CrossRef]

Siegner, U.

M. Bieler, K. Pierz, and U. Siegner, J. Appl. Phys. 100, 083710 (2006).
[CrossRef]

M. Bieler, K. Pierz, U. Siegner, and P. Dawson, Phys. Rev. B 73, 241312(R) (2006).
[CrossRef]

Sipe, J. E.

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, Phys. Rev. Lett. 90, 136603 (2003).
[CrossRef] [PubMed]

J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337 (2000).
[CrossRef]

Smirl, A. L.

C. Sames, J.-M. Ménard, M. Betz, A. L. Smirl, and H. M. van Driel, Phys. Rev. B 79, 045208 (2009); a similar emission pattern was used to identify AC injection currents that result from quantum interference between one- and two-photon absorption processes.
[CrossRef]

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, Phys. Rev. Lett. 90, 136603 (2003).
[CrossRef] [PubMed]

Spacenovic, M.

L. Costa, M. Betz, M. Spacenović, A. D. Bristow, and H. M. van Driel, Nat. Phys. 3, 632 (2007).
[CrossRef]

Stevens, M. J.

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, Phys. Rev. Lett. 90, 136603 (2003).
[CrossRef] [PubMed]

Taylor, A. T.

J. Ahn, A. V. Efimov, R. D. Averitt, and A. T. Taylor, Opt. Express 11, 1486 (2003).
[CrossRef]

van Driel, H. M.

C. Sames, J.-M. Ménard, M. Betz, A. L. Smirl, and H. M. van Driel, Phys. Rev. B 79, 045208 (2009); a similar emission pattern was used to identify AC injection currents that result from quantum interference between one- and two-photon absorption processes.
[CrossRef]

L. Costa, M. Betz, M. Spacenović, A. D. Bristow, and H. M. van Driel, Nat. Phys. 3, 632 (2007).
[CrossRef]

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, Phys. Rev. Lett. 90, 136603 (2003).
[CrossRef] [PubMed]

Warren, W. S.

W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

Weiner, A. M.

Woerner, M.

Wullert, J. R.

IEEE J. Sel. Top. Quantum Electron. (1)

M. Bieler, IEEE J. Sel. Top. Quantum Electron. 14, 458 (2008).
[CrossRef]

J. Appl. Phys. (1)

M. Bieler, K. Pierz, and U. Siegner, J. Appl. Phys. 100, 083710 (2006).
[CrossRef]

Nat. Phys. (1)

L. Costa, M. Betz, M. Spacenović, A. D. Bristow, and H. M. van Driel, Nat. Phys. 3, 632 (2007).
[CrossRef]

Opt. Express (1)

J. Ahn, A. V. Efimov, R. D. Averitt, and A. T. Taylor, Opt. Express 11, 1486 (2003).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (3)

J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337 (2000).
[CrossRef]

M. Bieler, K. Pierz, U. Siegner, and P. Dawson, Phys. Rev. B 73, 241312(R) (2006).
[CrossRef]

C. Sames, J.-M. Ménard, M. Betz, A. L. Smirl, and H. M. van Driel, Phys. Rev. B 79, 045208 (2009); a similar emission pattern was used to identify AC injection currents that result from quantum interference between one- and two-photon absorption processes.
[CrossRef]

Phys. Rev. Lett. (1)

M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, Phys. Rev. Lett. 90, 136603 (2003).
[CrossRef] [PubMed]

Science (2)

J. Güdde, M. Rohleder, T. Meier, S. W. Koch, and U. Höfer, Science 318, 1287 (2007).
[CrossRef] [PubMed]

W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

Other (1)

J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 2nd ed. (Springer, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup and orientation of the bulk GaAs sample. (b) Amplitude of the measured terahertz signal versus phase difference between the E x and the E y components. The inset shows a complete scan over 0.6 ps for unchirped laser pulses.

Fig. 2
Fig. 2

Measured terahertz traces of shift currents for excitation with (a) unchirped optical pulses and (b) negatively chirped optical pulses. Simulations of the terahertz emission for (c) unchirped and (d) negatively chirped excitation pulses. Calculated shift currents for (e) unchirped and (f) negatively chirped pulses. Shown are normalized traces. Blue solid curves represent zero phase delay while green dashed curves and red dotted curves represent phase delays corresponding to a decrease in the terahertz amplitude to 50% and 25%, respectively.

Fig. 3
Fig. 3

Illustration of the superposition of two negatively chirped optical pulses E x and E y for (a) zero temporal delay, (b) temporal delay δ t 1 > 0 , and (c) temporal delay δ t 2 > δ t 1 , leading to the formation of oscillating shift currents.

Fig. 4
Fig. 4

Contour plots of the measured terahertz field as a function of time and temporal delays between the two excitation pulses for (a) negatively chirped ( β = 12 , 500 fs 2 ) , (b) unchirped, and (c) positively chirped ( β = 12 , 500 fs 2 ) optical pulses. The relative temporal delay has been varied around the delay for which the amplitude has decreased to 25%.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

J a shift ( t ) = 2 σ a b c ( 0 ; ω 0 , ω 0 ) E b env ( t ) E c env ( t ) .
J y shift ( t ) = 4 σ y x y E x env ( t ) E y env ( t + δ t ) cos ( ω 0 δ t ) ,

Metrics