Abstract

We propose and report on what we believe to be the first experimental demonstration of an all-optical fiber-based Fredkin gate for reversible digital logic. The simple 3-input/3-output fiber-based nonlinear optical loop mirror architecture requires only minor alignment for full operation. A short nonlinear element, heavily doped GeO2 fiber (HDF), allows for a more compact design than typical nonlinear fiber gates. The HDF is ideal for studying reversibility, functioning as a noise-limited medium, as compared to the semiconductor optical amplifier, while allowing for cross-phase modulation, a nondissipative optical interaction. We suggest applications for secure communications, based on “cool” computing.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Maruyama, F. Nori, and V. Vedral, Rev. Mod. Phys. 81, 1 (2009).
    [CrossRef]
  2. X. Ma, J. Huang, and F. Lombardi, ACM J. Emerging Technol. Comput. Syst. 3, 1 (2008).
    [CrossRef]
  3. W. D. Pan and M. Nalasani, IEEE Potentials 24, 38 (2005).
    [CrossRef]
  4. E. Fredkin and T. Toffoli, Int. J. Theor. Phys. 21, 219 (1982).
    [CrossRef]
  5. R. P. Feynman, Feynman Lectures on Computation (Perseus, 1996).
  6. J. Hardy and J. Shamir, Opt. Express 15, 150 (2007).
    [CrossRef] [PubMed]
  7. J. Shamir, H. J. Caulfield, W. Micelli, and R. Seymour, Appl. Opt. 25, 1604 (1986).
    [CrossRef] [PubMed]
  8. A. J. Poustie and K. J. Blow, Opt. Commun. 174, 317 (2000).
    [CrossRef]
  9. G. J. Milburn, Phys. Rev. Lett. 62, 2124 (1989).
    [CrossRef] [PubMed]
  10. M. N. Islam, Phys. Today 47(5), 34 (1994).
    [CrossRef]
  11. E. Dianov and V. Mashinsky, J. Lightwave Technol. 23, 3500 (2005).
    [CrossRef]
  12. B. C. Sanders and G. J. Milburn, Phys. Rev. A 45, 1919 (1992).
    [CrossRef] [PubMed]
  13. N. Kostinski, K. Kravtsov, and P. R. Prucnal, IEEE Photon. Technol. Lett. 20, 2045 (2008).
    [CrossRef]

2009 (1)

K. Maruyama, F. Nori, and V. Vedral, Rev. Mod. Phys. 81, 1 (2009).
[CrossRef]

2008 (2)

X. Ma, J. Huang, and F. Lombardi, ACM J. Emerging Technol. Comput. Syst. 3, 1 (2008).
[CrossRef]

N. Kostinski, K. Kravtsov, and P. R. Prucnal, IEEE Photon. Technol. Lett. 20, 2045 (2008).
[CrossRef]

2007 (1)

2005 (2)

W. D. Pan and M. Nalasani, IEEE Potentials 24, 38 (2005).
[CrossRef]

E. Dianov and V. Mashinsky, J. Lightwave Technol. 23, 3500 (2005).
[CrossRef]

2000 (1)

A. J. Poustie and K. J. Blow, Opt. Commun. 174, 317 (2000).
[CrossRef]

1996 (1)

R. P. Feynman, Feynman Lectures on Computation (Perseus, 1996).

1994 (1)

M. N. Islam, Phys. Today 47(5), 34 (1994).
[CrossRef]

1992 (1)

B. C. Sanders and G. J. Milburn, Phys. Rev. A 45, 1919 (1992).
[CrossRef] [PubMed]

1989 (1)

G. J. Milburn, Phys. Rev. Lett. 62, 2124 (1989).
[CrossRef] [PubMed]

1986 (1)

1982 (1)

E. Fredkin and T. Toffoli, Int. J. Theor. Phys. 21, 219 (1982).
[CrossRef]

Blow, K. J.

A. J. Poustie and K. J. Blow, Opt. Commun. 174, 317 (2000).
[CrossRef]

Caulfield, H. J.

Dianov, E.

Feynman, R. P.

R. P. Feynman, Feynman Lectures on Computation (Perseus, 1996).

Fredkin, E.

E. Fredkin and T. Toffoli, Int. J. Theor. Phys. 21, 219 (1982).
[CrossRef]

Hardy, J.

Huang, J.

X. Ma, J. Huang, and F. Lombardi, ACM J. Emerging Technol. Comput. Syst. 3, 1 (2008).
[CrossRef]

Islam, M. N.

M. N. Islam, Phys. Today 47(5), 34 (1994).
[CrossRef]

Kostinski, N.

N. Kostinski, K. Kravtsov, and P. R. Prucnal, IEEE Photon. Technol. Lett. 20, 2045 (2008).
[CrossRef]

Kravtsov, K.

N. Kostinski, K. Kravtsov, and P. R. Prucnal, IEEE Photon. Technol. Lett. 20, 2045 (2008).
[CrossRef]

Lombardi, F.

X. Ma, J. Huang, and F. Lombardi, ACM J. Emerging Technol. Comput. Syst. 3, 1 (2008).
[CrossRef]

Ma, X.

X. Ma, J. Huang, and F. Lombardi, ACM J. Emerging Technol. Comput. Syst. 3, 1 (2008).
[CrossRef]

Maruyama, K.

K. Maruyama, F. Nori, and V. Vedral, Rev. Mod. Phys. 81, 1 (2009).
[CrossRef]

Mashinsky, V.

Micelli, W.

Milburn, G. J.

B. C. Sanders and G. J. Milburn, Phys. Rev. A 45, 1919 (1992).
[CrossRef] [PubMed]

G. J. Milburn, Phys. Rev. Lett. 62, 2124 (1989).
[CrossRef] [PubMed]

Nalasani, M.

W. D. Pan and M. Nalasani, IEEE Potentials 24, 38 (2005).
[CrossRef]

Nori, F.

K. Maruyama, F. Nori, and V. Vedral, Rev. Mod. Phys. 81, 1 (2009).
[CrossRef]

Pan, W. D.

W. D. Pan and M. Nalasani, IEEE Potentials 24, 38 (2005).
[CrossRef]

Poustie, A. J.

A. J. Poustie and K. J. Blow, Opt. Commun. 174, 317 (2000).
[CrossRef]

Prucnal, P. R.

N. Kostinski, K. Kravtsov, and P. R. Prucnal, IEEE Photon. Technol. Lett. 20, 2045 (2008).
[CrossRef]

Sanders, B. C.

B. C. Sanders and G. J. Milburn, Phys. Rev. A 45, 1919 (1992).
[CrossRef] [PubMed]

Seymour, R.

Shamir, J.

Toffoli, T.

E. Fredkin and T. Toffoli, Int. J. Theor. Phys. 21, 219 (1982).
[CrossRef]

Vedral, V.

K. Maruyama, F. Nori, and V. Vedral, Rev. Mod. Phys. 81, 1 (2009).
[CrossRef]

ACM J. Emerging Technol. Comput. Syst. (1)

X. Ma, J. Huang, and F. Lombardi, ACM J. Emerging Technol. Comput. Syst. 3, 1 (2008).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

N. Kostinski, K. Kravtsov, and P. R. Prucnal, IEEE Photon. Technol. Lett. 20, 2045 (2008).
[CrossRef]

IEEE Potentials (1)

W. D. Pan and M. Nalasani, IEEE Potentials 24, 38 (2005).
[CrossRef]

Int. J. Theor. Phys. (1)

E. Fredkin and T. Toffoli, Int. J. Theor. Phys. 21, 219 (1982).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

A. J. Poustie and K. J. Blow, Opt. Commun. 174, 317 (2000).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (1)

B. C. Sanders and G. J. Milburn, Phys. Rev. A 45, 1919 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

G. J. Milburn, Phys. Rev. Lett. 62, 2124 (1989).
[CrossRef] [PubMed]

Phys. Today (1)

M. N. Islam, Phys. Today 47(5), 34 (1994).
[CrossRef]

Rev. Mod. Phys. (1)

K. Maruyama, F. Nori, and V. Vedral, Rev. Mod. Phys. 81, 1 (2009).
[CrossRef]

Other (1)

R. P. Feynman, Feynman Lectures on Computation (Perseus, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

System architecture. EOM, electro-optic modulator; MLL, mode-locked fiber ring laser; SC, supercontinuum generation; TFF, thin-film filter; VDL, variable delay line.

Fig. 2
Fig. 2

Fredkin gate construction. A and B, probe pulses of same wavelength ( λ : 1553   nm ) ; C, control pulses of different wavelength ( λ : 1544   nm ) . If C is absent (bit 0) in any given bit period, A exits B (similarly B exits A ).

Fig. 3
Fig. 3

(a) General behavior of the Fredkin gate for arbitrary port inputs. CA represents the logic operation “C AND A.” A bar above a letter denotes conjugate. The addition operation is binary. (b) Realization of AND operation of “C AND A;” a and b are arbitrary values (1 or 0 in our case). Port B (equal to “a AND b”) carries the desired AND output, and ports A and C contain the garbage bits. C AND A corresponds to columns 1, 3, 5, and 7 in the truth table of Fig. 4 (output B in each column gives the desired answer).

Fig. 4
Fig. 4

(a) Input (A, B, and C) and output ( A , B , and C ) data sequences on oscilloscope in a 6-bit interval. (b) Fredkin truth table. Arrows indicate the column for the logic operation C AND A.

Metrics