Abstract

We have embedded thin tapered fibers (with diameters down to 1μm) in silica aerogel with low loss. The aerogel is rigid but behaves refractively like air, protecting the taper without disturbing light propagation along it. This enables a new class of fiber devices exploiting volume evanescent interactions with the aerogel itself or with dopants or gases in the pores.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Pajonk, J. Non-Cryst. Solids 225, 307 (1998).
    [CrossRef]
  2. L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
    [CrossRef] [PubMed]
  3. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 25, 1415 (2000).
    [CrossRef]
  4. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, Opt. Express 12, 2864 (2004).
    [CrossRef] [PubMed]
  5. N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson and C. I. Merzbacher, Chem. Mater. 11, 2837 (1999).
    [CrossRef]
  6. A. V. Rao, G. M. Pajonk, D. Haranath, and P. B. Wagh, J. Mater. Synth. Process. 6, 37 (1998).
    [CrossRef]
  7. M. R. Miner, B. Hosticka, and P. M. Norris, J. Non-Cryst. Solids 350, 285 (2004).
    [CrossRef]
  8. T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, Eur. Phys. J. C 52, 759 (2007).
    [CrossRef]
  9. D. Richter and D. Lipka, Nucl. Instrum. Methods Phys. Res. A 513, 635 (2003).
    [CrossRef]
  10. H. S. Mackenzie and F. P. Payne, Electron. Lett. 26, 130 (1990).
    [CrossRef]
  11. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 2003), Section 12.
  12. T. A. Birks, R. P. Kenny, K. P. Oakley, and C. V. Cryan, Electron. Lett. 26, 1761 (1990).
    [CrossRef]
  13. H. Yokogawa and M. Yokoyama, J. Non-Cryst. Solids 186, 23 (1995).
    [CrossRef]
  14. P. B. Wagh and S. V. Ingale, Ceram. Int. 28, 43 (2002).
    [CrossRef]

2007 (1)

T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, Eur. Phys. J. C 52, 759 (2007).
[CrossRef]

2005 (1)

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (2)

D. Richter and D. Lipka, Nucl. Instrum. Methods Phys. Res. A 513, 635 (2003).
[CrossRef]

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 2003), Section 12.

2002 (1)

P. B. Wagh and S. V. Ingale, Ceram. Int. 28, 43 (2002).
[CrossRef]

2000 (1)

1999 (1)

N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson and C. I. Merzbacher, Chem. Mater. 11, 2837 (1999).
[CrossRef]

1998 (2)

A. V. Rao, G. M. Pajonk, D. Haranath, and P. B. Wagh, J. Mater. Synth. Process. 6, 37 (1998).
[CrossRef]

G. M. Pajonk, J. Non-Cryst. Solids 225, 307 (1998).
[CrossRef]

1995 (1)

H. Yokogawa and M. Yokoyama, J. Non-Cryst. Solids 186, 23 (1995).
[CrossRef]

1990 (2)

T. A. Birks, R. P. Kenny, K. P. Oakley, and C. V. Cryan, Electron. Lett. 26, 1761 (1990).
[CrossRef]

H. S. Mackenzie and F. P. Payne, Electron. Lett. 26, 130 (1990).
[CrossRef]

Anderson, M. L.

N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson and C. I. Merzbacher, Chem. Mater. 11, 2837 (1999).
[CrossRef]

Bellunato, T.

T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, Eur. Phys. J. C 52, 759 (2007).
[CrossRef]

Birks, T. A.

Calvi, M.

T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, Eur. Phys. J. C 52, 759 (2007).
[CrossRef]

Chen, X.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

Cryan, C. V.

T. A. Birks, R. P. Kenny, K. P. Oakley, and C. V. Cryan, Electron. Lett. 26, 1761 (1990).
[CrossRef]

Elder, I. A.

N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson and C. I. Merzbacher, Chem. Mater. 11, 2837 (1999).
[CrossRef]

Gattass, R. R.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

Haranath, D.

A. V. Rao, G. M. Pajonk, D. Haranath, and P. B. Wagh, J. Mater. Synth. Process. 6, 37 (1998).
[CrossRef]

He, S.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

Hosticka, B.

M. R. Miner, B. Hosticka, and P. M. Norris, J. Non-Cryst. Solids 350, 285 (2004).
[CrossRef]

Ingale, S. V.

P. B. Wagh and S. V. Ingale, Ceram. Int. 28, 43 (2002).
[CrossRef]

Kenny, R. P.

T. A. Birks, R. P. Kenny, K. P. Oakley, and C. V. Cryan, Electron. Lett. 26, 1761 (1990).
[CrossRef]

Leon-Saval, S. G.

Leventis, N.

N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson and C. I. Merzbacher, Chem. Mater. 11, 2837 (1999).
[CrossRef]

Lipka, D.

D. Richter and D. Lipka, Nucl. Instrum. Methods Phys. Res. A 513, 635 (2003).
[CrossRef]

Liu, L.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

Lou, J.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 2003), Section 12.

Mackenzie, H. S.

H. S. Mackenzie and F. P. Payne, Electron. Lett. 26, 130 (1990).
[CrossRef]

Mason, M. W.

Matteuzzi, C.

T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, Eur. Phys. J. C 52, 759 (2007).
[CrossRef]

Mazur, E.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

Merzbacher, C. I.

N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson and C. I. Merzbacher, Chem. Mater. 11, 2837 (1999).
[CrossRef]

Miner, M. R.

M. R. Miner, B. Hosticka, and P. M. Norris, J. Non-Cryst. Solids 350, 285 (2004).
[CrossRef]

Musy, M.

T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, Eur. Phys. J. C 52, 759 (2007).
[CrossRef]

Norris, P. M.

M. R. Miner, B. Hosticka, and P. M. Norris, J. Non-Cryst. Solids 350, 285 (2004).
[CrossRef]

Oakley, K. P.

T. A. Birks, R. P. Kenny, K. P. Oakley, and C. V. Cryan, Electron. Lett. 26, 1761 (1990).
[CrossRef]

Pajonk, G. M.

A. V. Rao, G. M. Pajonk, D. Haranath, and P. B. Wagh, J. Mater. Synth. Process. 6, 37 (1998).
[CrossRef]

G. M. Pajonk, J. Non-Cryst. Solids 225, 307 (1998).
[CrossRef]

Payne, F. P.

H. S. Mackenzie and F. P. Payne, Electron. Lett. 26, 130 (1990).
[CrossRef]

Perego, D. L.

T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, Eur. Phys. J. C 52, 759 (2007).
[CrossRef]

Rao, A. V.

A. V. Rao, G. M. Pajonk, D. Haranath, and P. B. Wagh, J. Mater. Synth. Process. 6, 37 (1998).
[CrossRef]

Richter, D.

D. Richter and D. Lipka, Nucl. Instrum. Methods Phys. Res. A 513, 635 (2003).
[CrossRef]

Rolison, D. R.

N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson and C. I. Merzbacher, Chem. Mater. 11, 2837 (1999).
[CrossRef]

Russell, P. St. J.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 2003), Section 12.

Storaci, B.

T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, Eur. Phys. J. C 52, 759 (2007).
[CrossRef]

Tong, L.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

Wadsworth, W. J.

Wagh, P. B.

P. B. Wagh and S. V. Ingale, Ceram. Int. 28, 43 (2002).
[CrossRef]

A. V. Rao, G. M. Pajonk, D. Haranath, and P. B. Wagh, J. Mater. Synth. Process. 6, 37 (1998).
[CrossRef]

Yokogawa, H.

H. Yokogawa and M. Yokoyama, J. Non-Cryst. Solids 186, 23 (1995).
[CrossRef]

Yokoyama, M.

H. Yokogawa and M. Yokoyama, J. Non-Cryst. Solids 186, 23 (1995).
[CrossRef]

Ceram. Int. (1)

P. B. Wagh and S. V. Ingale, Ceram. Int. 28, 43 (2002).
[CrossRef]

Chem. Mater. (1)

N. Leventis, I. A. Elder, D. R. Rolison, M. L. Anderson and C. I. Merzbacher, Chem. Mater. 11, 2837 (1999).
[CrossRef]

Electron. Lett. (2)

H. S. Mackenzie and F. P. Payne, Electron. Lett. 26, 130 (1990).
[CrossRef]

T. A. Birks, R. P. Kenny, K. P. Oakley, and C. V. Cryan, Electron. Lett. 26, 1761 (1990).
[CrossRef]

Eur. Phys. J. C (1)

T. Bellunato, M. Calvi, C. Matteuzzi, M. Musy, D. L. Perego, and B. Storaci, Eur. Phys. J. C 52, 759 (2007).
[CrossRef]

J. Mater. Synth. Process. (1)

A. V. Rao, G. M. Pajonk, D. Haranath, and P. B. Wagh, J. Mater. Synth. Process. 6, 37 (1998).
[CrossRef]

J. Non-Cryst. Solids (3)

M. R. Miner, B. Hosticka, and P. M. Norris, J. Non-Cryst. Solids 350, 285 (2004).
[CrossRef]

G. M. Pajonk, J. Non-Cryst. Solids 225, 307 (1998).
[CrossRef]

H. Yokogawa and M. Yokoyama, J. Non-Cryst. Solids 186, 23 (1995).
[CrossRef]

Nano Lett. (1)

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. A (1)

D. Richter and D. Lipka, Nucl. Instrum. Methods Phys. Res. A 513, 635 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 2003), Section 12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measured supercritical drying cycle on a C O 2 phase diagram. The pressure and temperature were recorded every 5 min and marked by dots. The liquid-vapor phase boundary is not crossed; the liquid and vapor phases are never present at the same time.

Fig. 2
Fig. 2

Photos, to the same scale, of (a) a cracked aerogel sample with a broken embedded taper carrying some red laser light, (b) front and (c) side views of a good sample against different backgrounds.

Fig. 3
Fig. 3

Photos of embedded tapered fibers with waist diameters of (a) 10 μ m , (b) 2 μ m , and (c) 1 μ m . The fibers carry red laser light from left to right. Noticeable scattering begins at the start of the 1 - cm -long waist. The paths of the scattered light through the aerogel can be seen. The images are 3.1 cm long.

Fig. 4
Fig. 4

Transmission spectra of tapered fibers in air (broken curve) and in aerogel (solid curve) for waist diameters of 10 μ m (darker) and 1 μ m (lighter).

Metrics