Abstract

In this Letter we present an improvement of time-resolved off-axis digital holography by the use of tilted femtosecond laser pulses. The pulse front tilting of the reference beam with respect to the phase front allows larger crossing angles to be used for recording of digital holograms without significant reduction of pulse interference area (typically limited by low temporal coherence of ultrashort pulses). Such approach increases the area of interference fringes, thus enabling the higher resolution of the reconstructed image as well as better separation of dc term. Temporal resolution is not deteriorated by this method, as only the reference pulse is tilted. The proposed technique was applied for direct intensity clamping observations of light filaments in water using the laser pulses of 30fs duration.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 38, 6994 (1999).
    [CrossRef]
  2. M. Centurion, Y. Pu, Z. Liu, D. Psaltis, and T. Hänsch, Opt. Lett. 29, 772 (2004).
    [CrossRef] [PubMed]
  3. T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, Opt. Lett. 33, 58 (2008).
    [CrossRef]
  4. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 39, 4070 (2000).
    [CrossRef]
  5. A. A. Maznev, T. F. Crimmins, and K. A. Nelson, Opt. Lett. 23, 1378 (1998).
    [CrossRef]
  6. O. E. Martinez, Opt. Commun. 59, 229 (1986).
    [CrossRef]
  7. Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. R. Melloch, Opt. Lett. 26, 334 (2001).
    [CrossRef]
  8. G. Pretzler, A. Kasper, and K. J. Witte, Appl. Phys. B 70, 1 (2000).
    [CrossRef]
  9. P. Gabolde and R. Trebino, Opt. Express 14, 11460 (2006).
    [CrossRef] [PubMed]
  10. S. Minardi, A. Gopal, M. Tatarakis, A. Couairon, G. Tamošauskas, R. Piskarskas, A. Dubietis, and P. Di Trapani, Opt. Lett. 33, 86 (2008).
    [CrossRef]
  11. W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, Opt. Commun. 202, 189 (2002).
    [CrossRef]

2008 (2)

2006 (1)

2004 (1)

2002 (1)

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, Opt. Commun. 202, 189 (2002).
[CrossRef]

2001 (1)

2000 (2)

E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 39, 4070 (2000).
[CrossRef]

G. Pretzler, A. Kasper, and K. J. Witte, Appl. Phys. B 70, 1 (2000).
[CrossRef]

1999 (1)

1998 (1)

1986 (1)

O. E. Martinez, Opt. Commun. 59, 229 (1986).
[CrossRef]

Aközbek, N.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, Opt. Commun. 202, 189 (2002).
[CrossRef]

Ansari, Z.

Balciunas, T.

Becker, A.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, Opt. Commun. 202, 189 (2002).
[CrossRef]

Bowden, C. M.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, Opt. Commun. 202, 189 (2002).
[CrossRef]

Centurion, M.

Chin, S. L.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, Opt. Commun. 202, 189 (2002).
[CrossRef]

Couairon, A.

Crimmins, T. F.

Cuche, E.

Depeursinge, C.

Di Trapani, P.

Dubietis, A.

French, P. M. W.

Gabolde, P.

Gopal, A.

Gu, Y.

Hänsch, T.

Jones, R.

Kasper, A.

G. Pretzler, A. Kasper, and K. J. Witte, Appl. Phys. B 70, 1 (2000).
[CrossRef]

Liu, W.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, Opt. Commun. 202, 189 (2002).
[CrossRef]

Liu, Z.

Marquet, P.

Martinez, O. E.

O. E. Martinez, Opt. Commun. 59, 229 (1986).
[CrossRef]

Maznev, A. A.

Melloch, M. R.

Melninkaitis, A.

Minardi, S.

Nelson, K. A.

Nolte, D. D.

Petit, S.

W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, Opt. Commun. 202, 189 (2002).
[CrossRef]

Piskarskas, R.

Pretzler, G.

G. Pretzler, A. Kasper, and K. J. Witte, Appl. Phys. B 70, 1 (2000).
[CrossRef]

Psaltis, D.

Pu, Y.

Sirutkaitis, V.

Tamosauskas, G.

Tamošauskas, G.

Tatarakis, M.

Trebino, R.

Tziraki, M.

Witte, K. J.

G. Pretzler, A. Kasper, and K. J. Witte, Appl. Phys. B 70, 1 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Interference of ultrashort pulses. (a) Pulses without tilt resulting in limited coherent zone. (b) Tilted pulses that can interfere throughout whole surface.

Fig. 2
Fig. 2

Experimental setup of tilted pulse TRDH. P, polarizer; λ 2 , half-wave plate; M, mirror; BS, beam splitter; S, specimen; G, diffraction grating; A, aperture; CCD, digital camera; FS, fused silica slab.

Fig. 3
Fig. 3

(a) Spectrum and (b) autocorrelation trace of the probe pulse. (c) and (d) are lineouts of ultrashort pulse interference pattern in the case of a nontilted and a tilted pulse reference pulse, respectively.

Fig. 4
Fig. 4

(a)–(d) Phase contrast images of the filament and (e)–(h) lineouts at different pulse energies. Units are radians.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ξ = λ 0 z sin ( θ ) ( 2 c τ 0 ) .

Metrics