Abstract

This paper presents a method for measuring atmosphere temperature profile using a single iodine filter as frequency discriminator. This high spectral resolution lidar (HSRL) is a system reconfigured with the transmitter of a mobile Doppler wind lidar and with a receiving subsystem redesigned to pass the backscattering optical signal through the iodine cell twice to filter out the aerosol scattering signal and to allow analysis of the molecular scattering spectrum, thus measuring temperatures. We report what are believed to be the first results of vertical temperature profiling from the ground to 16km altitude by this lidar system (power–aperture product=0.35Wm2). Concurrent observations of an L band radiosonde were carried out on June 14 and August 3, 2008, in good agreement with HSRL temperature profiles.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Heaps, Appl. Opt. 36, 9402 (1997).
    [CrossRef]
  2. M. Radlach, A. Behrendt, S. Pal, A. Riede, and V. Wulfmeyer, in Proceedings of the 24th International Laser Radar Conference (2008), pp. 1056-1059.
  3. H. Shimizu, S. A. Lee, and C. Y. She, Appl. Opt. 22, 1373 (1983).
    [CrossRef] [PubMed]
  4. T. Kobayashi, H. Kawai, and T. Kato, in Proceedings of 24th International Laser Radar Conference (2008), pp. 1052-1055.
  5. G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, and E. Madonna, Nature Phys. Sci. 229, 78 (1971).
  6. D. Hua and T. Kobayashii, Appl. Opt. 44, 6474 (2005).
    [CrossRef] [PubMed]
  7. C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, Opt. Lett. 17, 541 (1992).
    [CrossRef] [PubMed]
  8. Z. Liu, I. Matsui, and N. Sugimoto, Opt. Eng. 38, 1661 (1999).
    [CrossRef]
  9. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, Appl. Opt. 40, 5280 (2001).
    [CrossRef]
  10. Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, Appl. Phys. B 88, 327 (2007).
    [CrossRef]
  11. C.-Y. She, Appl. Opt. 40, 4875 (2001).
    [CrossRef]
  12. G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

2008 (2)

M. Radlach, A. Behrendt, S. Pal, A. Riede, and V. Wulfmeyer, in Proceedings of the 24th International Laser Radar Conference (2008), pp. 1056-1059.

T. Kobayashi, H. Kawai, and T. Kato, in Proceedings of 24th International Laser Radar Conference (2008), pp. 1052-1055.

2007 (1)

Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, Appl. Phys. B 88, 327 (2007).
[CrossRef]

2005 (1)

2001 (2)

1999 (1)

Z. Liu, I. Matsui, and N. Sugimoto, Opt. Eng. 38, 1661 (1999).
[CrossRef]

1997 (1)

1992 (1)

1983 (1)

1974 (1)

G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

1971 (1)

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, and E. Madonna, Nature Phys. Sci. 229, 78 (1971).

Alvarez, R. J.

Behrendt, A.

M. Radlach, A. Behrendt, S. Pal, A. Riede, and V. Wulfmeyer, in Proceedings of the 24th International Laser Radar Conference (2008), pp. 1056-1059.

Beneditti-Machelangeli, G.

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, and E. Madonna, Nature Phys. Sci. 229, 78 (1971).

Boley, C. D.

G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

Caldwell, L. M.

Desai, R. C.

G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

Fiocco, G.

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, and E. Madonna, Nature Phys. Sci. 229, 78 (1971).

Hair, J. W.

Heaps, W. S.

Hua, D.

Kato, T.

T. Kobayashi, H. Kawai, and T. Kato, in Proceedings of 24th International Laser Radar Conference (2008), pp. 1052-1055.

Kawai, H.

T. Kobayashi, H. Kawai, and T. Kato, in Proceedings of 24th International Laser Radar Conference (2008), pp. 1052-1055.

Kobayashi, T.

T. Kobayashi, H. Kawai, and T. Kato, in Proceedings of 24th International Laser Radar Conference (2008), pp. 1052-1055.

Kobayashii, T.

Krueger, D. A.

Lee, S. A.

Li, Z. G.

Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, Appl. Phys. B 88, 327 (2007).
[CrossRef]

Liu, B. Y.

Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, Appl. Phys. B 88, 327 (2007).
[CrossRef]

Liu, Z.

Z. Liu, I. Matsui, and N. Sugimoto, Opt. Eng. 38, 1661 (1999).
[CrossRef]

Liu, Z. S.

Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, Appl. Phys. B 88, 327 (2007).
[CrossRef]

Madonna, E.

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, and E. Madonna, Nature Phys. Sci. 229, 78 (1971).

Maschberger, K.

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, and E. Madonna, Nature Phys. Sci. 229, 78 (1971).

Matsui, I.

Z. Liu, I. Matsui, and N. Sugimoto, Opt. Eng. 38, 1661 (1999).
[CrossRef]

Pal, S.

M. Radlach, A. Behrendt, S. Pal, A. Riede, and V. Wulfmeyer, in Proceedings of the 24th International Laser Radar Conference (2008), pp. 1056-1059.

Radlach, M.

M. Radlach, A. Behrendt, S. Pal, A. Riede, and V. Wulfmeyer, in Proceedings of the 24th International Laser Radar Conference (2008), pp. 1056-1059.

Riede, A.

M. Radlach, A. Behrendt, S. Pal, A. Riede, and V. Wulfmeyer, in Proceedings of the 24th International Laser Radar Conference (2008), pp. 1056-1059.

She, C. Y.

She, C.-Y.

Shimizu, H.

Sugimoto, N.

Z. Liu, I. Matsui, and N. Sugimoto, Opt. Eng. 38, 1661 (1999).
[CrossRef]

Sun, Z. B.

Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, Appl. Phys. B 88, 327 (2007).
[CrossRef]

Tenti, G.

G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

Wu, S. H.

Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, Appl. Phys. B 88, 327 (2007).
[CrossRef]

Wulfmeyer, V.

M. Radlach, A. Behrendt, S. Pal, A. Riede, and V. Wulfmeyer, in Proceedings of the 24th International Laser Radar Conference (2008), pp. 1056-1059.

Yan, Z. A.

Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, Appl. Phys. B 88, 327 (2007).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (1)

Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun, Appl. Phys. B 88, 327 (2007).
[CrossRef]

Can. J. Phys. (1)

G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

Nature Phys. Sci. (1)

G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, and E. Madonna, Nature Phys. Sci. 229, 78 (1971).

Opt. Eng. (1)

Z. Liu, I. Matsui, and N. Sugimoto, Opt. Eng. 38, 1661 (1999).
[CrossRef]

Opt. Lett. (1)

Other (2)

M. Radlach, A. Behrendt, S. Pal, A. Riede, and V. Wulfmeyer, in Proceedings of the 24th International Laser Radar Conference (2008), pp. 1056-1059.

T. Kobayashi, H. Kawai, and T. Kato, in Proceedings of 24th International Laser Radar Conference (2008), pp. 1052-1055.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

HSRL receiving subsystem.

Fig. 2
Fig. 2

Measurement principle ( R 1 with 270 K , 0.48 atm and R 2 with 300 K , 0.98 atm ).

Fig. 3
Fig. 3

Observed temperature profiles.

Fig. 4
Fig. 4

Temperature sensitivity.

Fig. 5
Fig. 5

SNR and temperature error as a function of altitude.

Tables (1)

Tables Icon

Table 1 Lidar System Parameters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

N r = r B S N ( R ) R ( P , T , ν ) f ( ν ) d ν ,
N m = ( 1 r B S ) N ( R ) R ( P , T , ν ) f 2 ( ν ) d ν ,
Ratio ( P , T ) = k norm N m N r ,
R ( P 1 , T 1 , ν ) = R 0 ( P 1 , T 0 , ν ) + R T ( P 1 , T 1 , ν ) ( T 1 T 0 ) ,
S 1 = δ [ Ratio ( P 1 , T 1 ) ] δ T ,
T 1 = [ Ratio ( P 1 , T 1 ) Ratio ( P 1 , T 0 ) ] S 1 + T 0 .
SNR 2 = N r + B r N r 2 + N m + B m N m 2 = 1 SNR r 2 + 1 SNR m 2 SNR = SNR r × SNR m SNR r 2 + SNR m 2 ,
Δ T = 1 SNR × S .

Metrics