Abstract

We demonstrate a time-domain distributed temperature sensing based on birefringence effect on transient Brillouin grating (TBG) in a polarization-maintaining photonic crystal fiber (PM-PCF), which uses two short pump pulses (2ns) to excite a TBG and a long probe pulse (6ns) to map the transient Brillouin grating spectrum (TBGS) associated with the birefringence. The 2ns pump pulses defines a spatial resolution of 20cm and a temperature measurement range of a few hundred degrees Celsius, and the long probe pulse provides a narrow TBGS with a temperature resolution of 0.07°C.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tanemura, Y. Takushima, and K. Kikuchi, Opt. Lett. 27, 1552 (2002).
    [CrossRef]
  2. X. Bao, D. J. Webb, and D. A. Jackson, Opt. Lett. 18, 1561 (1993).
    [CrossRef] [PubMed]
  3. M. Nikles, L. Thevenaz, and P. A. Robert, Opt. Lett. 21, 758 (1996).
    [CrossRef] [PubMed]
  4. Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
    [CrossRef] [PubMed]
  5. V. P. Kalosha, W. Li, F. Wang, L. Chen, and X. Bao, Opt. Lett. 33, 2848 (2008).
    [CrossRef] [PubMed]
  6. W. Zou, Z. He, K. Y. Song, and K. Hotate, Opt. Lett. 34, 1126 (2009).
    [CrossRef] [PubMed]
  7. K. Y. Song, W. Zou, Z. He, and K. Hotate, Opt. Lett. 34, 1381 (2009).
    [CrossRef] [PubMed]
  8. W. Wen, Z. He, and K. Hotate, Opt. Express 17, 1248 (2009).
    [CrossRef]

2009 (3)

2008 (1)

2007 (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef] [PubMed]

2002 (1)

1996 (1)

1993 (1)

Bao, X.

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef] [PubMed]

Chen, L.

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef] [PubMed]

He, Z.

Hotate, K.

Jackson, D. A.

Kalosha, V. P.

Kikuchi, K.

Li, W.

Nikles, M.

Robert, P. A.

Song, K. Y.

Takushima, Y.

Tanemura, T.

Thevenaz, L.

Wang, F.

Webb, D. J.

Wen, W.

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef] [PubMed]

Zou, W.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the distributed sensing based on birefringence effect on TBG. (a) The local TBG is excited by two short pump pulses; (b) the following long probe pulse is reflected by the local TBG, and the TBGS is obtained by sweeping the probe frequency; (c) the frequency relation of pump1 ( ν pump 1 ) , pump2 ( ν pump 2 ) , probe ( ν probe ) , and reflection ( ν reflection ) .

Fig. 2
Fig. 2

Experimental setup. PC, polarization controller; EOM, electro-optic modulator; EDFA, erbium-doped fiber amplifier; D, detector.

Fig. 3
Fig. 3

Measured TBGS with different probe pulses of 3 ns , 4 ns , and 6 ns .

Fig. 4
Fig. 4

Measured TBGS at different temperature shows the dependence of the central frequency on temperature. (a) Brillouin transient grating spectrum, (b) central frequency versus temperature. Note that the frequency difference between pump1 and pump2 is fixed at 11.131 GHz during the measurement.

Fig. 5
Fig. 5

Reflection probe signal versus position for a PM-PCF when Δ ν B = ν pump 2 ν pump 1 = 11131 MHz . The heated section is located between 0.9 m and 2.4 m .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ν = Δ n n ν ,
g ( ν ) = g 0 ( ν ) P ( ν probe )

Metrics