Abstract

The vector analysis of stimulated Brillouin scattering amplification in birefringent fibers is extended to include signal pulses. The analysis finds that the different slow-light delays experienced by the states of polarization corresponding to maximum and minimum gain may result in severe pulse distortion. Thus, a generally polarized pulse, experiencing only a moderate gain, can become broader than a pulse aligned for maximum gain and delay. The effect is demonstrated in both numerical simulations and experiments.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (Academic, 2003), Chap. 9, pp. 409-427.
    [CrossRef]
  2. L. Thévenaz, Nat. Photonics 2, 474 (2008).
    [CrossRef]
  3. G. M. Gehring, R. W. Boyd, A. L. Gaeta, D. J. Gauthier, and A. E. Willner, J. Lightwave Technol. 26, 3752 (2008).
    [CrossRef]
  4. M. O. van Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
    [CrossRef]
  5. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, Opt. Express 16, 21692 (2008).
    [CrossRef] [PubMed]
  6. A. Galtarossa, L. Palmieri, M. Santaguistina, L. Schenato, and L. Ursini, IEEE Photon. Technol. Lett. 20, 1420 (2008).
    [CrossRef]
  7. D. R. Walker, M. Bashkanski, A. Gulian, F. K. Fatemi, and M. Steiner, J. Opt. Soc. Am. B 25, C61 (2008).
    [CrossRef]
  8. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, J. Opt. Soc. Am. B 22, 2378 (2005).
    [CrossRef]
  9. J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
    [CrossRef] [PubMed]
  10. P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
    [CrossRef]

2008

2005

2000

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef] [PubMed]

1996

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

1994

M. O. van Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
[CrossRef]

Bashkanski, M.

Boot, A. J.

M. O. van Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
[CrossRef]

Boyd, R. W.

Eyal, A.

Fatemi, F. K.

Gaeta, A. L.

Galtarossa, A.

A. Galtarossa, L. Palmieri, M. Santaguistina, L. Schenato, and L. Ursini, IEEE Photon. Technol. Lett. 20, 1420 (2008).
[CrossRef]

Gauthier, D. J.

Gehring, G. M.

Gordon, J. P.

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef] [PubMed]

Gulian, A.

Kogelnik, H.

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef] [PubMed]

Menyuk, C. R.

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

Okawachi, Y.

Palmieri, L.

A. Galtarossa, L. Palmieri, M. Santaguistina, L. Schenato, and L. Ursini, IEEE Photon. Technol. Lett. 20, 1420 (2008).
[CrossRef]

Santaguistina, M.

A. Galtarossa, L. Palmieri, M. Santaguistina, L. Schenato, and L. Ursini, IEEE Photon. Technol. Lett. 20, 1420 (2008).
[CrossRef]

Schenato, L.

A. Galtarossa, L. Palmieri, M. Santaguistina, L. Schenato, and L. Ursini, IEEE Photon. Technol. Lett. 20, 1420 (2008).
[CrossRef]

Sharping, J. E.

Steiner, M.

Thévenaz, L.

Tur, M.

Ursini, L.

A. Galtarossa, L. Palmieri, M. Santaguistina, L. Schenato, and L. Ursini, IEEE Photon. Technol. Lett. 20, 1420 (2008).
[CrossRef]

van Deventer, M. O.

M. O. van Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
[CrossRef]

Wai, P. K. A.

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

Walker, D. R.

Willner, A. E.

Zadok, A.

Zhu, Z.

Zilka, E.

IEEE Photon. Technol. Lett.

A. Galtarossa, L. Palmieri, M. Santaguistina, L. Schenato, and L. Ursini, IEEE Photon. Technol. Lett. 20, 1420 (2008).
[CrossRef]

J. Lightwave Technol.

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

M. O. van Deventer and A. J. Boot, J. Lightwave Technol. 12, 585 (1994).
[CrossRef]

G. M. Gehring, R. W. Boyd, A. L. Gaeta, D. J. Gauthier, and A. E. Willner, J. Lightwave Technol. 26, 3752 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photonics

L. Thévenaz, Nat. Photonics 2, 474 (2008).
[CrossRef]

Opt. Express

Proc. Natl. Acad. Sci. USA

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef] [PubMed]

Other

R. W. Boyd, Nonlinear Optics (Academic, 2003), Chap. 9, pp. 409-427.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated Stokes parameters S 1 (dashed), S 2 (dashed–dotted) and S 3 (solid) of the input signal that leads to the minimum SBS gain, as a function of detuning Δ ω from the frequency of maximum SBS amplification, for a particular fiber realization. The simulation parameters were L = 140 m , L B = 40 m , L c = 10 m , | E pump | 2 = 560 mW , γ 0 = 0.16 ( W m ) 1 , and Γ B 2 π = 30 MHz .

Fig. 2
Fig. 2

Calculated, normalized signal power as a function of time. Dashed blue curve, input Gaussian pulse (FWHM 17 ns ). Solid curves, output pulses with the input SOP aligned for minimum gain (left, green) and maximum gain (right, red). Black dashed–dotted curves, examples of output pulses with intermediate input SOP alignments. Dotted curve, approximate output pulse, corresponding to the nearest dashed–dotted curve, calculated by using a decomposition of the near-minimum input SOP in the basis of e ̂ sig in ̱ max ( 0 ) , e ̂ sig in ̱ min ( 0 ) . The simulation parameters were the same as those of Fig. 1.

Fig. 3
Fig. 3

Experimental setup for observing SBS PMD. VOA, variable optical attenuator; Det, detector; RF, radio frequency; DC, direct current.

Fig. 4
Fig. 4

Measured, normalized signal power as a function of time. Dashed blue curve, input Gaussian pulse (FWHM 17 ns ). Solid curves, output pulses with the input SOP aligned for minimum gain (left, green) and maximum gain (right, red). Black dashed–dotted curves, examples of output pulses with intermediate input SOP alignments. Experimental conditions: L = 140 m , | E pump | 2 = 560 mW .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d E sig ( z , Δ ω ) d z = [ d T ( z ) d z T ( z ) + γ ( Δ ω ) 2 E pump ( z ) E pump ( z ) ] E sig ( z , Δ ω ) .
E sig ( L , Δ ω ) = U ( Δ ω ) [ G max ( Δ ω ) 0 0 G min ( Δ ω ) ] V ( Δ ω ) E sig ( 0 , Δ ω ) ,

Metrics