Abstract

Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even in the presence of strong bend perturbations. This opens the door to exploiting nonlinear fiber optics to manipulate such beams. This fiber also possesses the intriguingly counterintuitive property of being polarization maintaining despite being strictly cylindrically symmetric, a prospect hitherto considered infeasible with optical fibers.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  2. Y. I. Salamin, Phys. Rev. A 73, 043402 (2006).
    [CrossRef]
  3. Q. Zhan, Opt. Express 12, 3377 (2004).
    [CrossRef] [PubMed]
  4. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
    [CrossRef] [PubMed]
  5. A. V. Nesterov and V. G. Niziev, J. Phys. D 33, 1817 (2000).
    [CrossRef]
  6. M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, Opt. Lett. 32, 1824 (2007).
    [CrossRef] [PubMed]
  7. Y. Kozawa and S. Sato, Opt. Lett. 30, 3063 (2005).
    [CrossRef] [PubMed]
  8. J.-L. Li, K.-I. Ueda, M. Musha, and A. Shirakawa, and L.-X. Zhong, Opt. Lett. 31, 2969 (2006).
    [CrossRef] [PubMed]
  9. G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
    [CrossRef]
  10. P. Z. Dashti, F. Alhassen, and H. P. Lee, Phys. Rev. Lett. 96, 043064 (2006).
    [CrossRef]
  11. A. Witkowska, S. G. L-Saval, A. Pham, and T. A. Birks, Opt. Lett. 33, 306 (2008).
    [CrossRef] [PubMed]
  12. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

2008 (1)

2007 (1)

2006 (3)

Y. I. Salamin, Phys. Rev. A 73, 043402 (2006).
[CrossRef]

P. Z. Dashti, F. Alhassen, and H. P. Lee, Phys. Rev. Lett. 96, 043064 (2006).
[CrossRef]

J.-L. Li, K.-I. Ueda, M. Musha, and A. Shirakawa, and L.-X. Zhong, Opt. Lett. 31, 2969 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

Q. Zhan, Opt. Express 12, 3377 (2004).
[CrossRef] [PubMed]

G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
[CrossRef]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

2000 (1)

A. V. Nesterov and V. G. Niziev, J. Phys. D 33, 1817 (2000).
[CrossRef]

Ahmed, M. A.

Alhassen, F.

P. Z. Dashti, F. Alhassen, and H. P. Lee, Phys. Rev. Lett. 96, 043064 (2006).
[CrossRef]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Birks, T. A.

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Dashti, P. Z.

P. Z. Dashti, F. Alhassen, and H. P. Lee, Phys. Rev. Lett. 96, 043064 (2006).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Graf, T.

Kozawa, Y.

Lee, H. P.

P. Z. Dashti, F. Alhassen, and H. P. Lee, Phys. Rev. Lett. 96, 043064 (2006).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Li, J.-L.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

L-Saval, S. G.

Musha, M.

Nesterov, A. V.

A. V. Nesterov and V. G. Niziev, J. Phys. D 33, 1817 (2000).
[CrossRef]

Niziev, V. G.

A. V. Nesterov and V. G. Niziev, J. Phys. D 33, 1817 (2000).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Parriaux, O.

Petrov, D.

G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
[CrossRef]

Pham, A.

Pommier, J.-C.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Salamin, Y. I.

Y. I. Salamin, Phys. Rev. A 73, 043402 (2006).
[CrossRef]

Sato, S.

Schulz, J.

Shirakawa, A.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Ueda, K.-I.

Volpe, G.

G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
[CrossRef]

Voss, A.

Witkowska, A.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Zhan, Q.

Zhong, L.-X.

J. Phys. D (1)

A. V. Nesterov and V. G. Niziev, J. Phys. D 33, 1817 (2000).
[CrossRef]

Opt. Commun. (1)

G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (1)

Y. I. Salamin, Phys. Rev. A 73, 043402 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

P. Z. Dashti, F. Alhassen, and H. P. Lee, Phys. Rev. Lett. 96, 043064 (2006).
[CrossRef]

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Intensity patterns (white is maximum intensity) of the first higher-order mode group in a fiber. Arrows show the orientation of the electric field in each beam. The top row shows cylindrical vector modes that are the exact vector solutions in a fiber, while the bottom row shows the resultant, unstable LP11 modes commonly obtained at a fiber output. Specific linear combinations of pairs of top row of modes, resulting in the variety of LP11 modes obtained at a fiber output, are shown by colored lines.

Fig. 2
Fig. 2

(a) Measured refractive index profile (relative to silica index) for fabricated fiber, and corresponding LP 11 mode intensity profile. (b) Effective index for the three vector components of the scalar LP 11 mode for fiber shown in (a). n eff of radially polarized ( TM 01 ) mode separated by 1.8 × 10 4 from other modes.

Fig. 3
Fig. 3

(a) Experimental setup: the ring-design fiber is spliced to the SMF (bottom branch) for spectral measurements shown in (b), or cleaved and imaged on camera (top branch) for measurements shown in (c). (b) Measured grating resonance spectra for coupling from fundamental LP 01 mode to desired antisymmetric mode—efficiency > 99.8 % . (c) Experimentally recorded near-field images for the radially polarized ( TM 01 ) mode (top) and azimuthally polarized ( TE 01 ) mode (bottom). Clean annular intensity profile for both. Image rotation with polarizer in beam path consistent with expected polarization orientation for the two modes, confirming the polarization state of the two beams.

Fig. 4
Fig. 4

(a) Setup to compare polarization-maintaining characteristics of the CVB fiber and conventional SMF. Input and output gratings on the CVB fiber ensure that light entering or exiting the setup is conventionally polarized (i.e., spatially uniform, as in Gaussian beams), thus facilitating measurements with conventional fiber-optic test sets (such as polarization analyzers). (b) Poincare sphere representation of output SOP, to measure polarization-state variations as both fibers are perturbed. Red traces represent evolution of SOP on the front surface of the sphere (as viewed in the figure), while blue traces show SOP states on back surface of the sphere.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ β TE 01 = 0 , δ β TM 01 = 2 ( δ 1 + δ 2 ) , δ β HE 21 = ( δ 2 δ 1 ) ,
where
δ 1 = Δ n max 2 a 2 n co β r E ( r ) E ( r ) r ( Δ n ( r ) Δ n max ) r d r ,
δ 2 = Δ n max 2 a 2 n co β E 2 ( r ) ( Δ n ( r ) Δ n max ) r d r ,

Metrics