Abstract

Intensity noise of mode-locked fiber lasers is characterized systematically for all major mode-locking regimes over a wide range of parameters. We find that equally low-noise performance can be obtained in all regimes. Losses in the cavity influence noise strongly without a clear trace in the pulse characteristics. Given that high-energy fiber laser oscillators reported to date have utilized large output coupling ratios, they are likely to have had high noise. Instabilities that occur at high pulse energies are characterized. Noise level is virtually independent of pulse energy below a threshold for the onset of nonlinearly induced instabilities. Continuous-wave peak formation and multiple pulsing influence noise performance moderately. At high energies, a noise outburst is encountered, resulting in up to 2 orders of magnitude increase in noise. These results effectively constitute guidelines for minimization of the laser noise in mode-locked fiber lasers.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, Opt. Lett. 34, 593 (2009).
    [CrossRef] [PubMed]
  2. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992).
    [CrossRef]
  3. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  4. J. R. Buckley, F. Ö. Ilday, T. Sosnowski, and F. W. Wise, Opt. Lett. 30, 1888 (2005).
    [CrossRef] [PubMed]
  5. A. Chong, J. Buckley, W. Renninger, and F. Wise, Opt. Express 14, 10095 (2006).
    [CrossRef] [PubMed]
  6. B. Oktem, C. Ülgüdür, and F. Ö Ilday, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2008).
  7. I. N. Duling III, Electron. Lett. 27, 544 (1991).
    [CrossRef]
  8. K. Tamura, J. Jacobson, H. A. Haus, and L. E. Nelson, Opt. Lett. 18, 1080 (1993).
    [CrossRef] [PubMed]
  9. See, for example, K. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kaertner, Opt. Lett. 33, 2473 (2008).
    [CrossRef] [PubMed]
  10. S. Namiki and H. A. Haus, IEEE J. Quantum Electron. 33, 649 (1997).
    [CrossRef]
  11. R. Paschotta, Appl. Phys. B 79, 153 (2004).
  12. C. X. Yu, S. Namiki, and H. A. Haus, IEEE J. Quantum Electron. 33, 660 (1997).
    [CrossRef]
  13. J. Chen, J. W. Sickler, E. P. Ippen, and F. X. Kaertner, Opt. Lett. 32, 1566 (2007).
    [CrossRef] [PubMed]
  14. H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kaertner, Opt. Lett. 33, 2221 (2008).
    [CrossRef] [PubMed]
  15. P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, IEEE J. Sel. Top. Quantum Electron. 15, 145 (2009).
    [CrossRef]
  16. A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann, Opt. Lett. 28, 1537 (2003).
    [CrossRef] [PubMed]
  17. M. Hofer, M. E. Fermann, F. Harberl, M. H. Ober, and A. J. Schmidt, Opt. Lett. 16, 502 (1991).
    [CrossRef] [PubMed]
  18. R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Top. Quantum Electron. 7, 641 (2001).
    [CrossRef]
  19. S. Sanders, N. Park, J. W. Dawson, and K. J. Vahala, Appl. Phys. Lett. 61, 1889 (1992).
    [CrossRef]
  20. N. R. Newburry and W. C. Swann, J. Opt. Soc. Am. B 24, 1756 (2007).
    [CrossRef]
  21. S. H. Strogatz, Nonlinear Dynamics and Chaos (Perseus Books, 1994).

2009 (2)

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, Opt. Lett. 34, 593 (2009).
[CrossRef] [PubMed]

P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, IEEE J. Sel. Top. Quantum Electron. 15, 145 (2009).
[CrossRef]

2008 (2)

2007 (2)

2006 (1)

2005 (1)

2004 (2)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

R. Paschotta, Appl. Phys. B 79, 153 (2004).

2003 (1)

2001 (1)

R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Top. Quantum Electron. 7, 641 (2001).
[CrossRef]

1997 (2)

C. X. Yu, S. Namiki, and H. A. Haus, IEEE J. Quantum Electron. 33, 660 (1997).
[CrossRef]

S. Namiki and H. A. Haus, IEEE J. Quantum Electron. 33, 649 (1997).
[CrossRef]

1993 (1)

1992 (2)

S. Sanders, N. Park, J. W. Dawson, and K. J. Vahala, Appl. Phys. Lett. 61, 1889 (1992).
[CrossRef]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992).
[CrossRef]

1991 (2)

Buckley, J.

Buckley, J. R.

J. R. Buckley, F. Ö. Ilday, T. Sosnowski, and F. W. Wise, Opt. Lett. 30, 1888 (2005).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Budunoglu, I. L.

P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, IEEE J. Sel. Top. Quantum Electron. 15, 145 (2009).
[CrossRef]

Byun, H.

Chen, J.

Chong, A.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Dawson, J. W.

S. Sanders, N. Park, J. W. Dawson, and K. J. Vahala, Appl. Phys. Lett. 61, 1889 (1992).
[CrossRef]

Duling, I. N.

I. N. Duling III, Electron. Lett. 27, 544 (1991).
[CrossRef]

Fan, T. Y.

Fermann, M. E.

Fujimoto, J. G.

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992).
[CrossRef]

Gopinath, J.

Harberl, F.

Haus, H. A.

S. Namiki and H. A. Haus, IEEE J. Quantum Electron. 33, 649 (1997).
[CrossRef]

C. X. Yu, S. Namiki, and H. A. Haus, IEEE J. Quantum Electron. 33, 660 (1997).
[CrossRef]

K. Tamura, J. Jacobson, H. A. Haus, and L. E. Nelson, Opt. Lett. 18, 1080 (1993).
[CrossRef] [PubMed]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992).
[CrossRef]

Hofer, M.

Hong, K.

Hybl, J.

Ilday, F. Ö

B. Oktem, C. Ülgüdür, and F. Ö Ilday, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2008).

Ilday, F. Ö.

P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, IEEE J. Sel. Top. Quantum Electron. 15, 145 (2009).
[CrossRef]

See, for example, K. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kaertner, Opt. Lett. 33, 2473 (2008).
[CrossRef] [PubMed]

J. R. Buckley, F. Ö. Ilday, T. Sosnowski, and F. W. Wise, Opt. Lett. 30, 1888 (2005).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Ippen, E. P.

Jacobson, J.

Kaertner, F. X.

Kieu, K.

Kolner, B. H.

R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Top. Quantum Electron. 7, 641 (2001).
[CrossRef]

Langrock, C.

R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Top. Quantum Electron. 7, 641 (2001).
[CrossRef]

Liem, A.

Limpert, J.

Moses, J.

Mukhopadhyay, P. K.

P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, IEEE J. Sel. Top. Quantum Electron. 15, 145 (2009).
[CrossRef]

Namiki, S.

S. Namiki and H. A. Haus, IEEE J. Quantum Electron. 33, 649 (1997).
[CrossRef]

C. X. Yu, S. Namiki, and H. A. Haus, IEEE J. Quantum Electron. 33, 660 (1997).
[CrossRef]

Nelson, L. E.

Newburry, N. R.

Ober, M. H.

Oktem, B.

B. Oktem, C. Ülgüdür, and F. Ö Ilday, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2008).

Özgören, K.

P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, IEEE J. Sel. Top. Quantum Electron. 15, 145 (2009).
[CrossRef]

Park, N.

S. Sanders, N. Park, J. W. Dawson, and K. J. Vahala, Appl. Phys. Lett. 61, 1889 (1992).
[CrossRef]

Paschotta, R.

R. Paschotta, Appl. Phys. B 79, 153 (2004).

Pudo, D.

Renninger, W.

Renninger, W. H.

Sanders, S.

S. Sanders, N. Park, J. W. Dawson, and K. J. Vahala, Appl. Phys. Lett. 61, 1889 (1992).
[CrossRef]

Schmidt, A. J.

Scott, R. P.

R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Top. Quantum Electron. 7, 641 (2001).
[CrossRef]

Sickler, J. W.

Siddiqui, A.

Sosnowski, T.

Strogatz, S. H.

S. H. Strogatz, Nonlinear Dynamics and Chaos (Perseus Books, 1994).

Swann, W. C.

Tamura, K.

Tünnermann, A.

Ülgüdür, C.

B. Oktem, C. Ülgüdür, and F. Ö Ilday, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2008).

Vahala, K. J.

S. Sanders, N. Park, J. W. Dawson, and K. J. Vahala, Appl. Phys. Lett. 61, 1889 (1992).
[CrossRef]

Wise, F.

Wise, F. W.

Yu, C. X.

C. X. Yu, S. Namiki, and H. A. Haus, IEEE J. Quantum Electron. 33, 660 (1997).
[CrossRef]

Zellmer, H.

Appl. Phys. B (1)

R. Paschotta, Appl. Phys. B 79, 153 (2004).

Appl. Phys. Lett. (1)

S. Sanders, N. Park, J. W. Dawson, and K. J. Vahala, Appl. Phys. Lett. 61, 1889 (1992).
[CrossRef]

Electron. Lett. (1)

I. N. Duling III, Electron. Lett. 27, 544 (1991).
[CrossRef]

IEEE J. Quantum Electron. (3)

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992).
[CrossRef]

C. X. Yu, S. Namiki, and H. A. Haus, IEEE J. Quantum Electron. 33, 660 (1997).
[CrossRef]

S. Namiki and H. A. Haus, IEEE J. Quantum Electron. 33, 649 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

R. P. Scott, C. Langrock, and B. H. Kolner, IEEE J. Sel. Top. Quantum Electron. 7, 641 (2001).
[CrossRef]

P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, IEEE J. Sel. Top. Quantum Electron. 15, 145 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (8)

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Other (2)

B. Oktem, C. Ülgüdür, and F. Ö Ilday, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2008).

S. H. Strogatz, Nonlinear Dynamics and Chaos (Perseus Books, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Measured noise spectrum corresponding to the highest (solid curve) and lowest (dashed curve) cavity finesse levels obtained by adjustment of the linear loss. Dotted curve shows the measurement noise floor. Dash–dotted line indicates the shot noise limit. (b) Corresponding RIN of the laser integrated over the frequency range from 2.9 Hz to 250 kHz as a function of the net gain through the amplifying fiber segment.

Fig. 2
Fig. 2

(a) Measured noise spectrum corresponding to highest (solid curve) and lowest (dashed curve) cavity finesse levels obtained by adjustment of the NPE loss. Dash–dotted curve shows typical noise spectrum of the pump diode. Dotted curve shows the measurement noise floor. Dash–dotted line indicates the shot noise limit. (b) Corresponding RIN of the laser integrated over the frequency range from 2.9 Hz to 250 kHz as a function of the net gain through the amplifying fiber segment.

Fig. 3
Fig. 3

(a) Laser noise spectrum with (solid curve) and without (dashed curve) cw peak. Inset shows the measured optical spectra with (solid curve) and without (dashed curve) a cw peak. (b) Laser noise spectrum for double-pulsed (solid curve) and single-pulsed (dashed curve) operation. Inset shows the measured optical spectra for double-pulsed (solid curve) and single-pulsed (dashed curve) operation.

Fig. 4
Fig. 4

(a) Integrated (from 2.9 Hz to 250 kHz ) RIN of the laser as the pulse energy is first increased (up triangles) and then decreased (down triangles). (b) Optical spectra and autocorrelation traces (inset) measured immediately before and after the transition are shown by dashed and solid curves, respectively.

Tables (1)

Tables Icon

Table 1 Lowest Integrated (from 2.9 Hz to 250 Hz ) RIN Values at a Low and a High Pulse Energy

Metrics