Abstract

We demonstrate wavefront sensorless aberration correction in a two-photon excited fluorescence microscope. Using analysis of the image-formation process, we have developed an optimized correction scheme permitting image-quality improvement with minimal additional exposure of the sample. We show that, as a result, our correction process induces little photobleaching and significantly improves the quality of images of biological samples. In particular, increased visibility of small structures is demonstrated. Finally, we illustrate the use of this technique on various fresh and fixed biological tissues.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  2. M. Rueckel, J. Mack-Bucher, and W. Denk, Proc. Natl. Acad. Sci. USA 103, 17137 (2006).
    [CrossRef] [PubMed]
  3. P. N. Marsh, D. Burns, and J. M. Girkin, Opt. Express 11, 1123 (2003).
    [CrossRef] [PubMed]
  4. M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, Proc. Natl. Acad. Sci. USA 99, 5788 (2002).
    [CrossRef] [PubMed]
  5. D. Debarre, E. J. Botcherby, M. J. Booth, and T. Wilson, Opt. Express 16, 9290 (2008).
    [CrossRef] [PubMed]
  6. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).
  7. M. A. A. Neil, M. J. Booth, and T. Wilson, J. Opt. Soc. Am. A 17, 1098 (2000).
    [CrossRef]
  8. M. J. Booth, T. Wilson, H.-B. Sun, T. Ota, and S. Kawata, Appl. Opt. 44, 5131 (2005).
    [CrossRef] [PubMed]
  9. P. Parsa, S. L. Jacques, and N. S. Nishioka, Appl. Opt. 28, 2325 (1989).
    [CrossRef] [PubMed]

2008 (1)

2006 (1)

M. Rueckel, J. Mack-Bucher, and W. Denk, Proc. Natl. Acad. Sci. USA 103, 17137 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (1)

2002 (1)

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, Proc. Natl. Acad. Sci. USA 99, 5788 (2002).
[CrossRef] [PubMed]

2000 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

1989 (1)

Booth, M. J.

Botcherby, E. J.

Burns, D.

Debarre, D.

Denk, W.

M. Rueckel, J. Mack-Bucher, and W. Denk, Proc. Natl. Acad. Sci. USA 103, 17137 (2006).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Girkin, J. M.

Jacques, S. L.

Juškaitis, R.

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, Proc. Natl. Acad. Sci. USA 99, 5788 (2002).
[CrossRef] [PubMed]

Kawata, S.

Mack-Bucher, J.

M. Rueckel, J. Mack-Bucher, and W. Denk, Proc. Natl. Acad. Sci. USA 103, 17137 (2006).
[CrossRef] [PubMed]

Marsh, P. N.

Neil, M. A. A.

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, Proc. Natl. Acad. Sci. USA 99, 5788 (2002).
[CrossRef] [PubMed]

M. A. A. Neil, M. J. Booth, and T. Wilson, J. Opt. Soc. Am. A 17, 1098 (2000).
[CrossRef]

Nishioka, N. S.

Ota, T.

Parsa, P.

Rueckel, M.

M. Rueckel, J. Mack-Bucher, and W. Denk, Proc. Natl. Acad. Sci. USA 103, 17137 (2006).
[CrossRef] [PubMed]

Sheppard, C. J. R.

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Sun, H.-B.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Wilson, T.

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Proc. Natl. Acad. Sci. USA (2)

M. Rueckel, J. Mack-Bucher, and W. Denk, Proc. Natl. Acad. Sci. USA 103, 17137 (2006).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, Proc. Natl. Acad. Sci. USA 99, 5788 (2002).
[CrossRef] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Other (1)

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Supplementary Material (2)

» Media 1: AVI (4146 KB)     
» Media 2: AVI (15206 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: λ 2 ( λ 4 ) , half (quarter) wave plates; PBS, polarizing beam splitter; M, flat mirrors. Black solid lines, excitation path; dotted lines, emission path; gray lines, DM characterization path. Dashed lines show the conjugated Fourier planes. (b) Experimentally determined aberration modes Y i used for correction.

Fig. 2
Fig. 2

(a) Fresh mouse tissue before (left) and after one (middle) and five (right) iterations of the correction algorithm. (b) Image intensity and sharpness of the same sample as a function of the number of iterations.

Fig. 3
Fig. 3

(a) Visibility improvement of small structures after correction. (b) Corresponding image of a fresh mouse liver sample 100 μ m below the tissue surface before correction (top), after correction (middle), and before correction with an acquisition time twice longer (bottom). Inset, image of the same sample used for correction (same scale and color scale). Inverted contrast.

Fig. 4
Fig. 4

Depth-resolved correction on a mouse embryo. The two images (left, before; right, after correction) share the same color scale. Image size is 720 × 640   pixels . Insets, correction phase applied. (b) (Media 1, low res; Media 2, high res) 3D reconstruction of a 30 × 40 × 40 μ m 3 region of the embryo. (c) Aberration amplitude in Zernike modes as a function of depth. The objective correction collar was set so as to optimize image quality at a depth of 50 μ m in the sample.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M M 0 i , j a i a j X i , X j ,
X i , X j + | m | 2 ( C ( m ) e j Δ Φ d C ( m ) Δ X i Δ X j e j Δ Φ d C ( m ) Δ X i e j Δ Φ d C ( m ) Δ X j e j Δ Φ d ) d m d z ,
Y i , Y j = β i δ i j ,

Metrics