Abstract

The proposed method exploits the spectral properties of tissue hemoglobin for the purpose of 3D image reconstruction of quantum dot reporter probes inside scattering tissue. It advances fluorescence tomography in such way that only a single light source with tunable wavelength selection is required for fluorescence stimulation and image reconstruction. Numerical results suggest that current planar surface imaging technology could easily be retrofitted for performing fluorescence tomography without the use of elaborate source–detector multiplexing.

© 2009 Optical Society of America

Full Article  |  PDF Article
Related Articles
Modeling of spectral changes for depth localization of fluorescent inclusion

Jenny Svensson and Stefan Andersson-Engels
Opt. Express 13(11) 4263-4274 (2005)

A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography

Feng Gao, Huijuan Zhao, Yukari Tanikawa, and Yukio Yamada
Opt. Express 14(16) 7109-7124 (2006)

Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization

Scott C. Davis, Hamid Dehghani, Jia Wang, Shudong Jiang, Brian W. Pogue, and Keith D. Paulsen
Opt. Express 15(7) 4066-4082 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription