Abstract

We introduce an AgGaGeS4 crystal for sum-frequency generation in cross-correlation frequency-resolved optical gating (XFROG) to characterize mid-IR femtosecond laser pulses between the wavelengths of 3μm and 11μm. The performance of the AgGaGeS4 crystal was examined by comparing it with a LiNbO3 crystal, which has been frequently used in the near- to mid-IR region. We can obtain XFROG images by the AgGaGeS4 crystal with efficiency 30 times greater than LiNbO3 at the wavelength of 5μm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, Opt. Lett. 31, 838 (2006).
    [CrossRef] [PubMed]
  2. S. H. Shim, D. B. Strasfeld, and M. T. Zanni, Opt. Express 14, 13120 (2006).
    [CrossRef] [PubMed]
  3. C. Ventalon, J. M. Fraser, and M. Joffre, Opt. Lett. 28, 1826 (2003).
    [CrossRef] [PubMed]
  4. C. Ventalon, J. M. Fraser, J. P. Likforman, D. M. Villeneuve, P. B. Corkum, and M. Joffre, J. Opt. Soc. Am. B 23, 332 (2006).
    [CrossRef]
  5. S. Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206, 119 (1998).
    [CrossRef]
  6. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, Opt. Lett. 27, 1174 (2002).
    [CrossRef]
  7. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
    [CrossRef]
  8. D. T. Reid, P. Loza-Alvarez, C. T. A. Brown, T. Beddard, and W. Sibbett, Opt. Lett. 25, 1478 (2000).
    [CrossRef]
  9. J. A. Gruetzmacher and N. F. Scherer, Rev. Sci. Instrum. 73, 2227 (2002).
    [CrossRef]
  10. T. Fuji and T. Suzuki, Opt. Lett. 32, 3330 (2007).
    [CrossRef] [PubMed]
  11. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, New York, 2005).
  12. V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin, and V. Chizhikov, Opt. Mater. 26, 217 (2004).
    [CrossRef]
  13. P. G. Schunemann, K. T. Zawilski, and T. M. Pollak, J. Cryst. Growth 287, 248 (2006).
    [CrossRef]
  14. M. Tsubouchi and T. Momose, Opt. Commun. 282, 3757 (2009).
    [CrossRef]
  15. D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
    [CrossRef]

2009 (1)

M. Tsubouchi and T. Momose, Opt. Commun. 282, 3757 (2009).
[CrossRef]

2007 (1)

2006 (4)

2004 (1)

V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin, and V. Chizhikov, Opt. Mater. 26, 217 (2004).
[CrossRef]

2003 (1)

2002 (2)

2000 (2)

1998 (1)

S. Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206, 119 (1998).
[CrossRef]

1992 (1)

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

Badikov, V.

V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin, and V. Chizhikov, Opt. Mater. 26, 217 (2004).
[CrossRef]

Beddard, T.

Brown, C. T. A.

Chizhikov, V.

V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin, and V. Chizhikov, Opt. Mater. 26, 217 (2004).
[CrossRef]

Corkum, P. B.

Fraser, J. M.

Fuji, T.

Fulmer, E. C.

Giessen, H.

S. Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206, 119 (1998).
[CrossRef]

Gruetzmacher, J. A.

J. A. Gruetzmacher and N. F. Scherer, Rev. Sci. Instrum. 73, 2227 (2002).
[CrossRef]

Gu, X.

Hamm, P.

Joffre, M.

Kaindl, R. A.

Kimmel, M.

Kuhl, J.

S. Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206, 119 (1998).
[CrossRef]

Likforman, J. P.

Linden, S.

S. Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206, 119 (1998).
[CrossRef]

Loza-Alvarez, P.

Momose, T.

M. Tsubouchi and T. Momose, Opt. Commun. 282, 3757 (2009).
[CrossRef]

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, New York, 2005).

O'Shea, P.

Panyutin, V.

V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin, and V. Chizhikov, Opt. Mater. 26, 217 (2004).
[CrossRef]

Petrov, V.

V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin, and V. Chizhikov, Opt. Mater. 26, 217 (2004).
[CrossRef]

Pollak, T. M.

P. G. Schunemann, K. T. Zawilski, and T. M. Pollak, J. Cryst. Growth 287, 248 (2006).
[CrossRef]

Reid, D. T.

Reimann, K.

Roberts, D. A.

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

Scherer, N. F.

J. A. Gruetzmacher and N. F. Scherer, Rev. Sci. Instrum. 73, 2227 (2002).
[CrossRef]

Schunemann, P. G.

P. G. Schunemann, K. T. Zawilski, and T. M. Pollak, J. Cryst. Growth 287, 248 (2006).
[CrossRef]

Shevyrdyaeva, G.

V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin, and V. Chizhikov, Opt. Mater. 26, 217 (2004).
[CrossRef]

Shim, S. H.

Shreenath, A. P.

Sibbett, W.

Strasfeld, D. B.

Suzuki, T.

Trebino, R.

Tsubouchi, M.

M. Tsubouchi and T. Momose, Opt. Commun. 282, 3757 (2009).
[CrossRef]

Ventalon, C.

Villeneuve, D. M.

Weiner, A. M.

Windeler, R. S.

Woerner, M.

Wurm, M.

Xu, L.

Zanni, M. T.

Zawilski, K. T.

P. G. Schunemann, K. T. Zawilski, and T. M. Pollak, J. Cryst. Growth 287, 248 (2006).
[CrossRef]

Zeek, E.

IEEE J. Quantum Electron. (1)

D. A. Roberts, IEEE J. Quantum Electron. 28, 2057 (1992).
[CrossRef]

J. Cryst. Growth (1)

P. G. Schunemann, K. T. Zawilski, and T. M. Pollak, J. Cryst. Growth 287, 248 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

M. Tsubouchi and T. Momose, Opt. Commun. 282, 3757 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. (1)

V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin, and V. Chizhikov, Opt. Mater. 26, 217 (2004).
[CrossRef]

Phys. Status Solidi B (1)

S. Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206, 119 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

J. A. Gruetzmacher and N. F. Scherer, Rev. Sci. Instrum. 73, 2227 (2002).
[CrossRef]

Other (1)

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, New York, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) SFG-XFROG images of nonshaped MIR femtosecond pulses at various wavelengths measured by AGGS. The center wavelengths of the MIR pulses were (I) 7.6 μ m , (II) 6.7 μ m , (III) 5.9 μ m , (IV) 5.3 μ m , (V) 4.8 μ m , and (VI) 4.3 μ m . The vertical axis shows the SFG wavelength, and the horizontal axis shows the optical delay of the reference pulse from the MIR pulse. The wavelength of the reference pulse was 775 nm . (b) Frequency spectra of the MIR pulses shown in (a). Correspondence between the XFROG images in (a) and the spectra in (b) is indicated by Roman numbers I through VI. Dotted curves, indicated as Intensity (Obs.), show the FT-IR spectra of each pulse. Thick and thin curves, indicated as Intensity (Ret.) and Phase (Ret.), respectively, are the retrieved intensity and phase spectra of the SFG-XFROG images.

Fig. 2
Fig. 2

SFG spectra of the reference pulse and a nonshaped MIR pulse at 4.8 μ m generated in AGGS and LNO. The time delay between the two pulses was set to zero. The vertical scale for LNO is multiplied by 10.

Fig. 3
Fig. 3

SFG-XFROG images measured by AGGS for (a) a nonshaped pulse and (b) a double pulse in the time domain. Pulse separation in the double pulse was 800 fs . SFG-XFROG images measured by LNO for (c) the nonshaped pulse and (d) the double pulse. (e) Autocorrelation profiles for the nonshaped and double pulses.

Fig. 4
Fig. 4

Retrieved temporal profiles of (a) the nonshaped pulse and (b) the double pulse. Original XFROG images are shown in Fig. 3. Retrieved spectra of (c) the nonshaped pulse and (d) the double pulse. Thick solid and dashed curves are intensity profiles obtained by AGGS and LNO, respectively. Thin solid and dashed curves are phase profiles obtained by AGGS and LNO, respectively.

Metrics