Abstract

We report on the fabrication of a monolithic fiber Fabry–Perot interferometer whose cavity is a microscopic air bubble. The latter is formed when splicing together a conventional single-mode fiber and an index-guiding photonic crystal fiber with the standard arc-discharge technique. Spherical microcavities with diameters ranging from 20to58μm were fabricated with such a technique. The interferometers exhibited low thermal sensitivity (less than 1.0pm°C), high mechanical strength, broad operation wavelength range, and fringe contrast in the 812dB range. The applications of the interferometers for strain sensing (up to 5000μϵ) is demonstrated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription