Abstract

A single procedure based on speckle statistics is proposed to identify the scattering origins of light (surface or bulk). Successful results are obtained with high-scattering samples, which offers complementary techniques for imaging or characterization in random media. The speckle statistics are shown to be correlated to partial polarization. Angle-resolved ellipsometric data confirm all conclusions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Derode, P. Roux, and M. Fink, Phys. Rev. Lett. 75, 4206 (1995).
    [CrossRef] [PubMed]
  2. G. Moneron, A. C. Boccara, and A. Dubois, Opt. Lett. 30, 1351 (2005).
    [CrossRef] [PubMed]
  3. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).
  4. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  5. C. Amra, C. Grèzes-Besset, and L. Bruel, Appl. Opt. 32, 5492 (1993).
    [CrossRef] [PubMed]
  6. C. Amra, C. Deumié, and O. Gilbert, Opt. Express 13, 10854 (2005).
    [CrossRef] [PubMed]
  7. L. Arnaud, G. Georges, J. Sorrentini, M. Zerrad, C. Deumié, and C. Amra, Opt. Express 17, 5758 (2009).
    [CrossRef] [PubMed]
  8. C. Amra, M. Zerrad, L. Siozade, G. Georges, and C. Deumié, Opt. Express 16, 10372 (2008).
    [CrossRef] [PubMed]
  9. P. Réfrégier, J. Fade, and M. Roche, Opt. Lett. 32, 739 (2007).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (1)

2005 (2)

1995 (1)

A. Derode, P. Roux, and M. Fink, Phys. Rev. Lett. 75, 4206 (1995).
[CrossRef] [PubMed]

1993 (1)

Amra, C.

Arnaud, L.

Boccara, A. C.

Bruel, L.

Derode, A.

A. Derode, P. Roux, and M. Fink, Phys. Rev. Lett. 75, 4206 (1995).
[CrossRef] [PubMed]

Deumié, C.

Dubois, A.

Fade, J.

Fink, M.

A. Derode, P. Roux, and M. Fink, Phys. Rev. Lett. 75, 4206 (1995).
[CrossRef] [PubMed]

Georges, G.

Gilbert, O.

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).

Grèzes-Besset, C.

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Moneron, G.

Réfrégier, P.

Roche, M.

Roux, P.

A. Derode, P. Roux, and M. Fink, Phys. Rev. Lett. 75, 4206 (1995).
[CrossRef] [PubMed]

Siozade, L.

Sorrentini, J.

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Zerrad, M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Angular scattering curves of two surface and bulk Lambertian samples, measured with an angular subtense of 0.1° and an angular step of 2°. The wavelength is 633 nm , and the illumination incidence is 0°.

Fig. 2
Fig. 2

Normalized intensity histograms measured for the two Lambertian samples of Fig. 1 and gamma laws of order N = 1 (surface Lambertian) and N = 4 (bulk Lambertian).

Fig. 3
Fig. 3

Measurement of the polarimetric phase δ for the two Lambertian samples of Fig. 1 in the angular range [30°, 33°]. The angular step is 0.01°, and the angular subtense is 0.05°.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E s ( θ , ϕ ) = ν s s ( θ , ϕ ) A s + ν p s ( θ , ϕ ) A p e j η ,
E p ( θ , ϕ ) = ν s p ( θ , ϕ ) A s + ν p p ( θ , ϕ ) A p e j η .
I = | ν s s | 2 + | ν s p | 2 + | ν p p | 2 + | ν p s | 2 + 2 R ( ν s s ν p s * e j η ) + 2 R ( ν p p ν s p * e j η ) .
P N ( I ) = N N I N 1 e N I I ( N 1 ) ! I N .
I = | ν s s | 2 + | ν s p | 2 + | ν p p | 2 + | ν p s | 2 = i = 1 4 I i .
J = E E ,
E s ( θ , ϕ ) = A [ ν s s ( θ , ϕ ) + ν p s ( θ , ϕ ) ] ,
E p ( θ , ϕ ) = A [ ν s p ( θ , ϕ ) + ν p p ( θ , ϕ ) ] ,
J = ( | ν s | 2 ν s ν p * ν s ν p * * | ν p | 2 ) ,
μ = | μ | e j ψ = ν s ν p * ( | ν p | 2 | ν s | 2 ) 1 2 ,
μ = ν s s ν p p * + ν s s ν s p * + ν p s ν s p * + ν p s ν p p * ( | ν s s + ν p s | 2 | ν p p + ν s p | 2 ) 1 2 .
δ = arg ( ν s ν p * ) = arg [ ( ν s s + ν p s ) ( ν p p + ν s p ) * ] .
I Ω = I [ ν s ν p * ] = | ν s ν p * | sin δ ,
I 2 Ω = R [ ν s ν p * ] = | ν s ν p * | cos δ .
I Ω = I [ ν s ν p * ] = ( | ν p | 2 | ν s | 2 ) 1 2 | μ | sin ψ ,
I 2 Ω = R [ ν s ν p * ] = ( | ν p | 2 | ν s | 2 ) 1 2 | μ | cos ψ .

Metrics