Abstract

We present that multiple mutually independent coherence areas can be used for simultaneous spatial filtering in an imaging platform as effective as pinhole scanning. In this imaging platform, the unique combination of low-spatial-coherence illumination and differential angle imaging allows us to take advantage of low-coherence enhanced-backscattering (LEBS) phenomenon to permit self-generated optical sectioning to the subsurface in a relatively large area. We further demonstrate that LEBS spectroscopic imaging substantially minimizes cross talk among adjacent pixels, rejects the background light caused by out-of-plane scattered light, and thereby enhances image contrast and resolution.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Amos and J. G. White, Biol. Cell 95, 335 (2003).
    [CrossRef] [PubMed]
  2. J. G. Fujimoto, Nat. Biotechnol. 21, 1361 (2003).
    [CrossRef] [PubMed]
  3. M. A. A. Neil, R. Juskaitis, and T. Wilson, Opt. Lett. 22, 1905 (1997).
    [CrossRef]
  4. G. J. Tearney, R. H. Webb, and B. E. Bouma, Opt. Lett. 23, 1152 (1998).
    [CrossRef]
  5. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  6. Y. L. Kim, Y. Liu, V. M. Turzhitsky, H. K. Roy, R. K. Wali, and V. Backman, Opt. Lett. 29, 1906 (2004).
    [CrossRef] [PubMed]
  7. Y. L. Kim, Y. Liu, V. M. Turzhitsky, R. K. Wali, H. K. Roy, and V. Backman, Opt. Lett. 30, 741 (2005).
    [CrossRef] [PubMed]
  8. Y. L. Kim, P. Pradhan, H. Subramanian, Y. Liu, M. H. Kim, and V. Backman, Opt. Lett. 31, 1459 (2006).
    [CrossRef] [PubMed]
  9. Y. L. Kim, P. Pradhan, M. H. Kim, and V. Backman, Opt. Lett. 31, 2744 (2006).
    [CrossRef] [PubMed]
  10. B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathe, and T. Lasser, Opt. Lett. 29, 736 (2004).
    [CrossRef] [PubMed]
  11. J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, J. Biomed. Opt. 10, 064034 (2005).
    [CrossRef]
  12. R. N. Graf, W. J. Brown, and A. Wax, Opt. Lett. 33, 1285 (2008).
    [CrossRef] [PubMed]
  13. A. P. Tzannes and J. M. Mooney, Opt. Eng. 34, 1808 (1995).
    [CrossRef]

2008 (1)

2006 (2)

2005 (2)

Y. L. Kim, Y. Liu, V. M. Turzhitsky, R. K. Wali, H. K. Roy, and V. Backman, Opt. Lett. 30, 741 (2005).
[CrossRef] [PubMed]

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

2004 (2)

2003 (2)

W. B. Amos and J. G. White, Biol. Cell 95, 335 (2003).
[CrossRef] [PubMed]

J. G. Fujimoto, Nat. Biotechnol. 21, 1361 (2003).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

1995 (1)

A. P. Tzannes and J. M. Mooney, Opt. Eng. 34, 1808 (1995).
[CrossRef]

Amos, W. B.

W. B. Amos and J. G. White, Biol. Cell 95, 335 (2003).
[CrossRef] [PubMed]

Backman, V.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Bouma, B. E.

Brown, W. J.

Fujimoto, J. G.

J. G. Fujimoto, Nat. Biotechnol. 21, 1361 (2003).
[CrossRef] [PubMed]

Graf, R. N.

Juskaitis, R.

Karamata, B.

Kim, E.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Kim, J.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Kim, M. H.

Kim, Y. L.

Lambelet, P.

Lasser, T.

Laubscher, M.

Liu, Y.

Miller, D. T.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Milner, T. E.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Mooney, J. M.

A. P. Tzannes and J. M. Mooney, Opt. Eng. 34, 1808 (1995).
[CrossRef]

Neil, M. A. A.

Oh, J.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Oh, S.

J. Kim, D. T. Miller, E. Kim, S. Oh, J. Oh, and T. E. Milner, J. Biomed. Opt. 10, 064034 (2005).
[CrossRef]

Pradhan, P.

Roy, H. K.

Salathe, R. P.

Subramanian, H.

Tearney, G. J.

Turzhitsky, V. M.

Tzannes, A. P.

A. P. Tzannes and J. M. Mooney, Opt. Eng. 34, 1808 (1995).
[CrossRef]

Wali, R. K.

Wax, A.

Webb, R. H.

White, J. G.

W. B. Amos and J. G. White, Biol. Cell 95, 335 (2003).
[CrossRef] [PubMed]

Wilson, T.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Instrument: the unique combination of low spatial coherence illumination and differential angle imaging offers an LEBS imaging platform with multiple mutually independent spatial gating as effective as pinhole gating. A1 and A2 are apertures, and P is a linear polarizer.

Fig. 2
Fig. 2

Images of a white-grid microscope slide placed on top of a diffusive medium: (a), (b) images formed by backscattering angles θ = 1.0 ° and 3.0°, respectively; (c) LEBS imaging dramatically improves the image contrast, because virtual pinhole scanning derived from multiple independent coherence areas generates optical-sectioning to the subsurface; (d) line spread function (LSF) of the white grid. LEBS imaging improves the resolution as high as approximately twice.

Fig. 3
Fig. 3

Spectral analyses of two-layered tissue phantoms. (a) The base layer is an optically thick turbid medium containing hemoglobin of 0.23 g L , while the superficial layer (the optical thickness τ = 2 ) consists of microspheres without any other absorbers. The spectrum of LEBS imaging does not show any of hemoglobin absorption bands. (b) The base layer consists of polystyrene microspheres (diameter 3.2 μ m ), and the top layer is the aqueous suspension of polystyrene microspheres (diameter 4.0 μ m ) with τ = 1 . The spectrum of LEBS imaging reveals the oscillatory scattering pattern of low-order scattering events from the top layer.

Fig. 4
Fig. 4

(a), (b) Spectroscopic images of tumor phantoms consisting of the 2 μ L drop of the agarose gel consisting of the large size microspheres on top of the diffusive medium. The LEBS spectroscopic image (c) dramatically enhances the contrast of the drop compared with the surrounding area. The contrasts between the drop and the surrounding diffusive medium are 0.52, 0.42, and 0.75, while the FWHMs of LSFs are 195, 439, and 81 μ m for θ = 1.0 ° , θ = 3.0 ° , and LEBS imaging, respectively. Our LEBS imaging platform allows an effective independent spectral analysis at each ( x , y ) position due to simultaneous virtual pinhole scanning in the entire imaging area.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I LEBS ( x , y ) = 0 ° 1 ° I ( x , y , θ ) d θ α 1 ° 3 ° I ( x , y , θ ) d θ = 0 ° 1 ° I ( x , y , θ ) d θ β 0 ° 3 ° I ( x , y , θ ) d θ ,

Metrics