Abstract

We propose an approach based on a 3D directional wavelet transform to retrieve optical phase distributions in temporal speckle pattern interferometry. We show that this approach can effectively recover phase distributions in time series of speckle interferograms that are affected by sets of adjacent nonmodulated pixels. The performance of this phase retrieval approach is analyzed by introducing a temporal carrier in the out-of-plane interferometer setup and assuming modulation loss and noise effects. The advantages and limitations of this approach are finally discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Huntley, in Digital Speckle Pattern Interferometry and Related Techniques, P.K.Rastogi, ed. (Wiley, 2001), pp. 59-139.
  2. C. J. Tay and Y. Fu, Opt. Lett. 30, 2873 (2005).
    [CrossRef] [PubMed]
  3. Y. Fu, C. J. Tay, C. Quan, and H. Miao, Appl. Opt. 44, 959 (2005).
    [CrossRef] [PubMed]
  4. L. R. Watkins, Opt. Lasers Eng. 45, 298 (2007).
    [CrossRef]
  5. Y. Fu, R. M. Groves, G. Pedrini, and W. Osten, Appl. Opt. 46, 8645 (2007).
    [CrossRef] [PubMed]
  6. F. A. Marengo Rodriguez, A. Federico, and G. H. Kaufmann, Appl. Opt. 47, 1310 (2008).
    [CrossRef]
  7. A. Federico and G. H. Kaufmann, Opt. Lett. 33, 866 (2008).
    [CrossRef] [PubMed]
  8. S. Equis and P. Jacquot, Opt. Express 17, 611 (2009).
    [CrossRef] [PubMed]
  9. R. Murenzi, in Wavelets, Time-Frequency Methods and Phase Space, J.-M.Combes, A.Grossman, and Ph.Tchamitchian, eds. (Springer, 1989), pp. 239-246.
  10. Z. Wang and A. C. Bovik, IEEE Signal Process. Lett. 9, 81 (2002).
    [CrossRef]
  11. Efficient Matlab implementation and analyzed examples, http://www.cns.nyu.edu/~zwang.

2009 (1)

2008 (2)

2007 (2)

2005 (2)

2002 (1)

Z. Wang and A. C. Bovik, IEEE Signal Process. Lett. 9, 81 (2002).
[CrossRef]

Bovik, A. C.

Z. Wang and A. C. Bovik, IEEE Signal Process. Lett. 9, 81 (2002).
[CrossRef]

Equis, S.

Federico, A.

Fu, Y.

Groves, R. M.

Huntley, J. M.

J. M. Huntley, in Digital Speckle Pattern Interferometry and Related Techniques, P.K.Rastogi, ed. (Wiley, 2001), pp. 59-139.

Jacquot, P.

Kaufmann, G. H.

Marengo Rodriguez, F. A.

Miao, H.

Murenzi, R.

R. Murenzi, in Wavelets, Time-Frequency Methods and Phase Space, J.-M.Combes, A.Grossman, and Ph.Tchamitchian, eds. (Springer, 1989), pp. 239-246.

Osten, W.

Pedrini, G.

Quan, C.

Tay, C. J.

Wang, Z.

Z. Wang and A. C. Bovik, IEEE Signal Process. Lett. 9, 81 (2002).
[CrossRef]

Watkins, L. R.

L. R. Watkins, Opt. Lasers Eng. 45, 298 (2007).
[CrossRef]

Appl. Opt. (3)

IEEE Signal Process. Lett. (1)

Z. Wang and A. C. Bovik, IEEE Signal Process. Lett. 9, 81 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

L. R. Watkins, Opt. Lasers Eng. 45, 298 (2007).
[CrossRef]

Opt. Lett. (2)

Other (3)

R. Murenzi, in Wavelets, Time-Frequency Methods and Phase Space, J.-M.Combes, A.Grossman, and Ph.Tchamitchian, eds. (Springer, 1989), pp. 239-246.

J. M. Huntley, in Digital Speckle Pattern Interferometry and Related Techniques, P.K.Rastogi, ed. (Wiley, 2001), pp. 59-139.

Efficient Matlab implementation and analyzed examples, http://www.cns.nyu.edu/~zwang.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Simulated phase distribution corresponding to the maximum deformation, (b) spatial distribution of the zero blocks in the frame t n = 256 when s = 3   pixels , (c) evolution of the temporal intensity for a pixel belonging to the block C.

Fig. 2
Fig. 2

(a) Temporal evolution of the quality index with squares, rhombuses, and upright triangles corresponding to s = 1 , 3, and 5   pixels without smoothing and with dashes, circles, and inverted triangles corresponding to s = 1 , 3, and 5   pixels with smoothing, respectively. (b) Retrieved phase distribution at the maximum deformation obtained with smoothing when s = 3   pixels .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S ( a , θ , ζ , b ) = C ψ 1 a d 3 x ψ * [ 1 a r θ ζ ( x b ) ] I ( x ) ,
ψ ( x , y , t ) = e i k 0 t σ t e [ ( x σ x ) 2 + ( y σ y ) 2 + ( t σ t ) 2 ] 2 ,
S ( a , x , y , t ) = C ψ 1 a d t ψ M * [ 1 a ( t t ) ] d x d y ψ G [ 1 a ( x x , y y ) ] I ( x , y , t ) .
Q = σ E O σ E σ O 2 E O E 2 + O 2 2 σ E σ O σ E 2 + σ O 2 ,

Metrics