Abstract

We observe coherent, cw, 455nm blue-beam production via frequency upconversion in cesium vapor. Two IR lasers induce strong double excitation in a heated cesium vapor cell, allowing the atoms to undergo a double cascade and produce a coherent, collimated, blue beam copropagating with the two IR pump lasers.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
    [CrossRef]
  2. J. Mompart and R. Corbalálan, J. Opt. B 2, R7 (2000).
    [CrossRef]
  3. U. Hinze, B. N. Chichkov, E. Tiemann, and B. Wellegehausen, J. Opt. Soc. Am. B 17, 2001 (2000).
    [CrossRef]
  4. M. A. Moore, W. R. Garrett, and M. G. Payne, Phys. Rev. A 39, 3692 (1989).
    [CrossRef] [PubMed]
  5. K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
    [CrossRef] [PubMed]
  6. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
    [CrossRef]
  7. J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. Lett. 68, 3535 (1992).
    [CrossRef] [PubMed]
  8. D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, Phys. Rev. A 52, 2302 (1995).
    [CrossRef] [PubMed]
  9. Y. Li and M. Xiao, Opt. Lett. 21, 1064 (1996).
    [CrossRef] [PubMed]
  10. H. Wu, M. Xiao, and J. Gea-Banacloche, Phys. Rev. A 78, 041802R (2008).
    [CrossRef]
  11. D. Höckel, M. Scholz, and O. Benson, Appl. Phys. B 94, 429 (2009).
    [CrossRef]
  12. S. M. Hamadani, J. A. D. Stockdale, R. N. Compton, and M. S. Pindzola, Phys. Rev. A 35, 1938 (1986).
    [CrossRef]
  13. P. S. Bhatia, R. Welch, M. O. Scully, J. Opt. Soc. Am. B 18, 1587 (2001).
    [CrossRef]
  14. L. Xiao, T. Huang, L. Wang, J. Zhao, and S. Jia, Meas. Sci. Technol. 17, L5 (2006).
    [CrossRef]
  15. S. V. Kargapol'tsev, V. L. Velichansky, A. V. Yarovitsky, A. V. Taichenachev, and V. I. Yudin, Quantum Electron. 35, 591 (2005).
    [CrossRef]
  16. A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Scully, Phys. Rev. A 65, 051801R (2002).
    [CrossRef]
  17. T. Meijer, J. D. White, B. Smeets, M. Jeppesen, and R. E. Scholten, Opt. Lett. 31, 1002 (2006).
    [CrossRef] [PubMed]
  18. A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett. 83, 4049 (1999).
    [CrossRef]
  19. The steady-state solution to a four-level OBE model shows that the coherence between the 6S1/2 and 6D5/2 states is nonzero. The off-diagonal density matrix element ρ13 is proportional to the coherence and does not decay to zero in the steady state.
  20. We assumed a Rabi frequency of 1 MHz for both the 455 nm and 15.1 μm beams. The transition probabilities used for the 6S3/2-->6P1/2, 6D5/2-->6P3/2, 6D5/2-->7P3/2, and 7P3/2-->6S1/2 transitions were 5, 15.2, 0.063, and 0.795 MHz, respectively. Branching ratios can be found in [15].
  21. J. B. Taylor and I. Langmuir, Phys. Rev. 51, 753 (1937).
    [CrossRef]
  22. G. J. Dixon, C. E. Tanner, and C. E. Wieman, Opt. Lett. 14, 731 (1989).
    [CrossRef] [PubMed]

2009

D. Höckel, M. Scholz, and O. Benson, Appl. Phys. B 94, 429 (2009).
[CrossRef]

2008

H. Wu, M. Xiao, and J. Gea-Banacloche, Phys. Rev. A 78, 041802R (2008).
[CrossRef]

2006

L. Xiao, T. Huang, L. Wang, J. Zhao, and S. Jia, Meas. Sci. Technol. 17, L5 (2006).
[CrossRef]

T. Meijer, J. D. White, B. Smeets, M. Jeppesen, and R. E. Scholten, Opt. Lett. 31, 1002 (2006).
[CrossRef] [PubMed]

2005

S. V. Kargapol'tsev, V. L. Velichansky, A. V. Yarovitsky, A. V. Taichenachev, and V. I. Yudin, Quantum Electron. 35, 591 (2005).
[CrossRef]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

2002

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Scully, Phys. Rev. A 65, 051801R (2002).
[CrossRef]

2001

2000

1999

A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett. 83, 4049 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

1996

1995

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, Phys. Rev. A 52, 2302 (1995).
[CrossRef] [PubMed]

1992

J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. Lett. 68, 3535 (1992).
[CrossRef] [PubMed]

1991

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

1989

M. A. Moore, W. R. Garrett, and M. G. Payne, Phys. Rev. A 39, 3692 (1989).
[CrossRef] [PubMed]

G. J. Dixon, C. E. Tanner, and C. E. Wieman, Opt. Lett. 14, 731 (1989).
[CrossRef] [PubMed]

1986

S. M. Hamadani, J. A. D. Stockdale, R. N. Compton, and M. S. Pindzola, Phys. Rev. A 35, 1938 (1986).
[CrossRef]

1937

J. B. Taylor and I. Langmuir, Phys. Rev. 51, 753 (1937).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Benson, O.

D. Höckel, M. Scholz, and O. Benson, Appl. Phys. B 94, 429 (2009).
[CrossRef]

Bhatia, P. S.

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

Chichkov, B. N.

Compton, R. N.

S. M. Hamadani, J. A. D. Stockdale, R. N. Compton, and M. S. Pindzola, Phys. Rev. A 35, 1938 (1986).
[CrossRef]

Corbalálan, R.

J. Mompart and R. Corbalálan, J. Opt. B 2, R7 (2000).
[CrossRef]

Dixon, G. J.

Dunn, M. H.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, Phys. Rev. A 52, 2302 (1995).
[CrossRef] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Fulton, D. J.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, Phys. Rev. A 52, 2302 (1995).
[CrossRef] [PubMed]

Garrett, W. R.

M. A. Moore, W. R. Garrett, and M. G. Payne, Phys. Rev. A 39, 3692 (1989).
[CrossRef] [PubMed]

Gea-Banacloche, J.

H. Wu, M. Xiao, and J. Gea-Banacloche, Phys. Rev. A 78, 041802R (2008).
[CrossRef]

Hamadani, S. M.

S. M. Hamadani, J. A. D. Stockdale, R. N. Compton, and M. S. Pindzola, Phys. Rev. A 35, 1938 (1986).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Hinze, U.

Höckel, D.

D. Höckel, M. Scholz, and O. Benson, Appl. Phys. B 94, 429 (2009).
[CrossRef]

Hollberg, L.

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Scully, Phys. Rev. A 65, 051801R (2002).
[CrossRef]

Huang, T.

L. Xiao, T. Huang, L. Wang, J. Zhao, and S. Jia, Meas. Sci. Technol. 17, L5 (2006).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

Jeppesen, M.

Jia, S.

L. Xiao, T. Huang, L. Wang, J. Zhao, and S. Jia, Meas. Sci. Technol. 17, L5 (2006).
[CrossRef]

Kargapol'tsev, S. V.

S. V. Kargapol'tsev, V. L. Velichansky, A. V. Yarovitsky, A. V. Taichenachev, and V. I. Yudin, Quantum Electron. 35, 591 (2005).
[CrossRef]

Krause, J. L.

J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. Lett. 68, 3535 (1992).
[CrossRef] [PubMed]

Kulander, K. C.

J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. Lett. 68, 3535 (1992).
[CrossRef] [PubMed]

Langmuir, I.

J. B. Taylor and I. Langmuir, Phys. Rev. 51, 753 (1937).
[CrossRef]

Li, Y.

Lukin, M. D.

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Scully, Phys. Rev. A 65, 051801R (2002).
[CrossRef]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett. 83, 4049 (1999).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Meijer, T.

Mompart, J.

J. Mompart and R. Corbalálan, J. Opt. B 2, R7 (2000).
[CrossRef]

Moore, M. A.

M. A. Moore, W. R. Garrett, and M. G. Payne, Phys. Rev. A 39, 3692 (1989).
[CrossRef] [PubMed]

Moseley, R. R.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, Phys. Rev. A 52, 2302 (1995).
[CrossRef] [PubMed]

Payne, M. G.

M. A. Moore, W. R. Garrett, and M. G. Payne, Phys. Rev. A 39, 3692 (1989).
[CrossRef] [PubMed]

Pindzola, M. S.

S. M. Hamadani, J. A. D. Stockdale, R. N. Compton, and M. S. Pindzola, Phys. Rev. A 35, 1938 (1986).
[CrossRef]

Schafer, K. J.

J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. Lett. 68, 3535 (1992).
[CrossRef] [PubMed]

Scholten, R. E.

Scholz, M.

D. Höckel, M. Scholz, and O. Benson, Appl. Phys. B 94, 429 (2009).
[CrossRef]

Scully, M. O.

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Scully, Phys. Rev. A 65, 051801R (2002).
[CrossRef]

P. S. Bhatia, R. Welch, M. O. Scully, J. Opt. Soc. Am. B 18, 1587 (2001).
[CrossRef]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett. 83, 4049 (1999).
[CrossRef]

Shepherd, S.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, Phys. Rev. A 52, 2302 (1995).
[CrossRef] [PubMed]

Sinclair, B. D.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, Phys. Rev. A 52, 2302 (1995).
[CrossRef] [PubMed]

Smeets, B.

Stockdale, J. A. D.

S. M. Hamadani, J. A. D. Stockdale, R. N. Compton, and M. S. Pindzola, Phys. Rev. A 35, 1938 (1986).
[CrossRef]

Taichenachev, A. V.

S. V. Kargapol'tsev, V. L. Velichansky, A. V. Yarovitsky, A. V. Taichenachev, and V. I. Yudin, Quantum Electron. 35, 591 (2005).
[CrossRef]

Tanner, C. E.

Taylor, J. B.

J. B. Taylor and I. Langmuir, Phys. Rev. 51, 753 (1937).
[CrossRef]

Tiemann, E.

Velichansky, V. L.

S. V. Kargapol'tsev, V. L. Velichansky, A. V. Yarovitsky, A. V. Taichenachev, and V. I. Yudin, Quantum Electron. 35, 591 (2005).
[CrossRef]

Wang, L.

L. Xiao, T. Huang, L. Wang, J. Zhao, and S. Jia, Meas. Sci. Technol. 17, L5 (2006).
[CrossRef]

Welch, R.

Wellegehausen, B.

White, J. D.

Wieman, C. E.

Wu, H.

H. Wu, M. Xiao, and J. Gea-Banacloche, Phys. Rev. A 78, 041802R (2008).
[CrossRef]

Xiao, L.

L. Xiao, T. Huang, L. Wang, J. Zhao, and S. Jia, Meas. Sci. Technol. 17, L5 (2006).
[CrossRef]

Xiao, M.

H. Wu, M. Xiao, and J. Gea-Banacloche, Phys. Rev. A 78, 041802R (2008).
[CrossRef]

Y. Li and M. Xiao, Opt. Lett. 21, 1064 (1996).
[CrossRef] [PubMed]

Yarovitsky, A. V.

S. V. Kargapol'tsev, V. L. Velichansky, A. V. Yarovitsky, A. V. Taichenachev, and V. I. Yudin, Quantum Electron. 35, 591 (2005).
[CrossRef]

Yudin, V. I.

S. V. Kargapol'tsev, V. L. Velichansky, A. V. Yarovitsky, A. V. Taichenachev, and V. I. Yudin, Quantum Electron. 35, 591 (2005).
[CrossRef]

Zhao, J.

L. Xiao, T. Huang, L. Wang, J. Zhao, and S. Jia, Meas. Sci. Technol. 17, L5 (2006).
[CrossRef]

Zibrov, A. S.

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Scully, Phys. Rev. A 65, 051801R (2002).
[CrossRef]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett. 83, 4049 (1999).
[CrossRef]

Appl. Phys. B

D. Höckel, M. Scholz, and O. Benson, Appl. Phys. B 94, 429 (2009).
[CrossRef]

J. Opt. B

J. Mompart and R. Corbalálan, J. Opt. B 2, R7 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

L. Xiao, T. Huang, L. Wang, J. Zhao, and S. Jia, Meas. Sci. Technol. 17, L5 (2006).
[CrossRef]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Opt. Lett.

Phys. Rev.

J. B. Taylor and I. Langmuir, Phys. Rev. 51, 753 (1937).
[CrossRef]

Phys. Rev. A

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Scully, Phys. Rev. A 65, 051801R (2002).
[CrossRef]

M. A. Moore, W. R. Garrett, and M. G. Payne, Phys. Rev. A 39, 3692 (1989).
[CrossRef] [PubMed]

S. M. Hamadani, J. A. D. Stockdale, R. N. Compton, and M. S. Pindzola, Phys. Rev. A 35, 1938 (1986).
[CrossRef]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, Phys. Rev. A 52, 2302 (1995).
[CrossRef] [PubMed]

H. Wu, M. Xiao, and J. Gea-Banacloche, Phys. Rev. A 78, 041802R (2008).
[CrossRef]

Phys. Rev. Lett.

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. Lett. 68, 3535 (1992).
[CrossRef] [PubMed]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett. 83, 4049 (1999).
[CrossRef]

Quantum Electron.

S. V. Kargapol'tsev, V. L. Velichansky, A. V. Yarovitsky, A. V. Taichenachev, and V. I. Yudin, Quantum Electron. 35, 591 (2005).
[CrossRef]

Rev. Mod. Phys.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Other

The steady-state solution to a four-level OBE model shows that the coherence between the 6S1/2 and 6D5/2 states is nonzero. The off-diagonal density matrix element ρ13 is proportional to the coherence and does not decay to zero in the steady state.

We assumed a Rabi frequency of 1 MHz for both the 455 nm and 15.1 μm beams. The transition probabilities used for the 6S3/2-->6P1/2, 6D5/2-->6P3/2, 6D5/2-->7P3/2, and 7P3/2-->6S1/2 transitions were 5, 15.2, 0.063, and 0.795 MHz, respectively. Branching ratios can be found in [15].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy level scheme in Cs 133 . The atoms undergo a double cascade through the 7 P 3 2 state, producing a 455 nm beam on the transition to the ground state.

Fig. 2
Fig. 2

Schematic of experimental arrangement. Two lasers ( 852 nm , 917 nm ) excite Cs 133 on the 6S–6P–6D transitions, and coherent 455 nm radiation is emitted. The blue beam is sent through an aperture and a bandpass filter and is detected with a photomultiplier tube (PMT). A PMT is also used to measure the blue fluorescence in the cell. OI, optical isolator; BS, nonpolarizing beam splitter.

Fig. 3
Fig. 3

Measurement of blue-beam intensity as a function of optical depth at 852 nm . Interference fringes from a Mach–Zehnder interferometer with unequal path lengths (inset). Even at relatively low power ( 100 nW ) , the blue pixels in the image are saturated. A fringe visibility of 93 % was calculated by integrating over intensity of the green pixels in rows of the red–green–blue image of the fringe pattern.

Fig. 4
Fig. 4

Blue-beam output as the frequency of the 917 nm beam is scanned. (a) The spacing between the peaks is 203 MHz and 252 MHz , which is the spacing of the hyperfine levels of the 6 P 3 2 state ( F = 3 F = 4 and F = 4 F = 5 , respectively). (b) The asymmetry of this spectrum is in good qualitative agreement with theoretical spectra calculated in [16]. The frequency axes are calibrated by sending a portion of the 917 nm beam through an interferometer with a path-length difference Δ L = 1.17 m , giving a fringe separation of 256 MHz .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

OD = N σ r l = p ( T ) σ r l k T ,

Metrics