Abstract

We present a simple technique to integrate an electro-optic Q switch in a periodically poled bulk lithium niobate crystal bounded by two unpoled (monodomain) regions. The technique exploits the high sensitivity to low applied electric fields of the total internal reflection condition in the periodic poled–unpoled boundary for the small grazing incidence angles associated with the diffraction of a focused Gaussian beam that propagates in the periodically poled region with its axis parallel to the boundary. When the arrangement is placed intracavity to a 1064nm diode-pumped Nd3+:YVO4 laser, it performs simultaneously as a Q switch and as a second-harmonic generator, with Q switching starting at applied voltages as low as 1V over a 500μm thickness and with no additional optical elements.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Y Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, J. Opt. Soc. Am. B 3, 140 (1986).
    [CrossRef]
  2. Y. H. Chen and Y. C. Huang, Opt. Lett. 28, 1460 (2003).
    [CrossRef] [PubMed]
  3. Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, Appl. Phys. Lett. B80, 889 (2005).
  4. S. T. Lin, G. W. Chang, Y. Y. Lin, Y. C. Huang, A. C. Chiang, and Y. H. Chen, Opt. Express 15, 17093 (2007).
    [CrossRef] [PubMed]
  5. Y. Y. Lin, S. T. Lin, G. W. Chang, A. C. Chiang, Y. C. Huang, and Y. H. Chen, Opt. Lett. 32, 545 (2007).
    [CrossRef] [PubMed]
  6. Y. H. Chen, Y. C. Chang, C. H. Lin, and T. Y. Chung, Opt. Express 16, 2048 (2008).
    [CrossRef] [PubMed]
  7. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  8. M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, J. Appl. Phys. 97, 044102 (2005).
    [CrossRef]
  9. A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, Opt. Commun. 197, 193 (2001).
    [CrossRef]
  10. W. P. Risk, J. Opt. Soc. Am. B 5, 1412 (1988).
    [CrossRef]
  11. G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]

2008 (1)

2007 (2)

2005 (2)

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, Appl. Phys. Lett. B80, 889 (2005).

M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, J. Appl. Phys. 97, 044102 (2005).
[CrossRef]

2003 (1)

2001 (1)

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, Opt. Commun. 197, 193 (2001).
[CrossRef]

1988 (1)

1986 (1)

1968 (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Boyland, A. J.

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, Opt. Commun. 197, 193 (2001).
[CrossRef]

Buse, K.

M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, J. Appl. Phys. 97, 044102 (2005).
[CrossRef]

Byer, R. L.

Chang, G. W.

Chang, Y. C.

Chen, Y. F.

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, Appl. Phys. Lett. B80, 889 (2005).

Chen, Y. H.

Chiang, A. C.

Chung, T. Y.

Cordova-Plaza, A.

Digonnet, M. J. F.

Eason, R. W.

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, Opt. Commun. 197, 193 (2001).
[CrossRef]

Fan, T. Y

Fejer, M. M.

M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, J. Appl. Phys. 97, 044102 (2005).
[CrossRef]

Hendricks, J. M.

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, Opt. Commun. 197, 193 (2001).
[CrossRef]

Huang, Y. C.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Langrock, C.

M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, J. Appl. Phys. 97, 044102 (2005).
[CrossRef]

Lin, C. H.

Lin, S. T.

Lin, Y. Y.

Mailis, S.

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, Opt. Commun. 197, 193 (2001).
[CrossRef]

Müller, M.

M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, J. Appl. Phys. 97, 044102 (2005).
[CrossRef]

Risk, W. P.

Shaw, H. J.

Smith, P. G. R.

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, Opt. Commun. 197, 193 (2001).
[CrossRef]

Soergel, E.

M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, J. Appl. Phys. 97, 044102 (2005).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Appl. Phys. Lett. (1)

Y. H. Chen, Y. C. Huang, Y. Y. Lin, and Y. F. Chen, Appl. Phys. Lett. B80, 889 (2005).

J. Appl. Phys. (2)

M. Müller, E. Soergel, K. Buse, C. Langrock, and M. M. Fejer, J. Appl. Phys. 97, 044102 (2005).
[CrossRef]

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, Opt. Commun. 197, 193 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the PPLN crystal with metallic electrodes.

Fig. 2
Fig. 2

Different output-beam Lloyd interference patterns in the external experiment for a Gaussian beam diameter size of 200 μ m for an off-axis displacement with one-third of the beam diameter at 1 e 2 propagating in the unpoled region for (a) 0 V , (b) 300 V of the no-TIR sign, and (c) 300 V of the TIR sign; (d) and (e) are the same as (a) and (c) but for an off-axis displacement with one-fifth of the beam diameter at 1 e 2 propagating in the unpoled region.

Fig. 3
Fig. 3

Scheme of the Nd 3 + : Y V O 4 + PPLN Q-switched laser.

Fig. 4
Fig. 4

(a) Temporal shape of the Q-switch pulses obtained with V = 70 V and T = 1 % output coupling at a pulse repetition rate of 100 Hz ; (b) display of 100 consecutive pulses showing < 1 ns jitter and 5 % rms amplitude fluctuation; (c) train of consecutive pulses; (d) SH beam profile.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

cos ϕ = n e ( r 33 n e 3 E 2 ) n e + ( r 33 n e 3 E 2 ) ,

Metrics