Abstract

We demonstrate the long-distance transmission of an ultrastable optical frequency derived directly from a state-of-the-art optical frequency standard. Using an active stabilization system we deliver the frequency via a 146-km-long underground fiber link with a fractional instability of 3×10−15 at 1 s, which is close to the theoretical limit for our transfer experiment. After 30,000 s, the relative uncertainty for the transfer is at the level of 1×10−19. Tests with a very short fiber show that noise in our stabilization system contributes fluctuations that are 2 orders of magnitude lower, namely, 3×10−17 at 1 s, reaching 10−20 after 4000 s.

© 2009 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription