Abstract

We demonstrate, through numerical simulations, that an appropriately chosen nonuniformly polarized coherent optical field can have appreciably smaller scintillation than comparable beams of uniform polarization. This results from the fact that a nonuniformly polarized field acts as an effective two-mode partially coherent field. The results described here are of direct relevance to the development of free-space optical communication systems.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, 2001).
    [CrossRef]
  2. J. C. Leader, J. Opt. Soc. Am. 69, 73 (1979).
    [CrossRef]
  3. V. A. Banakh, V. M. Buldakov, and V. L. Mironov, Opt. Commun. 54, 1054 (1983).
  4. J. C. Ricklin and F. M. Davidson, J. Opt. Soc. Am. A 19, 1794 (2002).
    [CrossRef]
  5. O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. (Bellingham) 43, 330 (2004).
    [CrossRef]
  6. T. J. Schulz, Opt. Lett. 30, 1093 (2005).
    [CrossRef] [PubMed]
  7. A. Peleg and J. C. Moloney, J. Opt. Soc. Am. A 23, 3114 (2006).
    [CrossRef]
  8. P. Polynkin, A. Peleg, L. Klein, T. Rhoadarmer, and J. C. Moloney, Opt. Lett. 32, 885 (2007).
    [CrossRef] [PubMed]
  9. A. D. Wheelon, Electromagnetic Scintillation II. Weak Scattering (Cambridge U. Press, 2003).
  10. M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, Waves Random Media 14, 513 (2004).
    [CrossRef]
  11. O. Korotkova, M. Salem, A. Dogariu, and E. Wolf, Waves Random Media 15, 353 (2005).
    [CrossRef]
  12. O. Korotkova, Opt. Commun. 281, 2342 (2008).
  13. K. Youngworth and T. Brown, Opt. Express 7, 77 (2000).
    [CrossRef] [PubMed]
  14. T. Wang and J. Pu, Opt. Commun. 281, 3617 (2008).
    [CrossRef]
  15. Y. Cai, Q. Lin, H. T. Eyyuboglu, and Y. Baykal, Opt. Express 16, 7665 (2007).
    [CrossRef]
  16. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Press, 1998).
  17. J. M. Martin and S. M. Flatté, Appl. Opt. 27, 2111 (1988).
    [CrossRef] [PubMed]
  18. Y. Kozawa and S. Sato, Opt. Lett. 30, 3063 (2007).
    [CrossRef]

2008 (2)

O. Korotkova, Opt. Commun. 281, 2342 (2008).

T. Wang and J. Pu, Opt. Commun. 281, 3617 (2008).
[CrossRef]

2007 (3)

2006 (1)

2005 (2)

T. J. Schulz, Opt. Lett. 30, 1093 (2005).
[CrossRef] [PubMed]

O. Korotkova, M. Salem, A. Dogariu, and E. Wolf, Waves Random Media 15, 353 (2005).
[CrossRef]

2004 (2)

O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. (Bellingham) 43, 330 (2004).
[CrossRef]

M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, Waves Random Media 14, 513 (2004).
[CrossRef]

2002 (1)

2000 (1)

1988 (1)

1983 (1)

V. A. Banakh, V. M. Buldakov, and V. L. Mironov, Opt. Commun. 54, 1054 (1983).

1979 (1)

Andrews, L. C.

O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. (Bellingham) 43, 330 (2004).
[CrossRef]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Press, 1998).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, 2001).
[CrossRef]

Banakh, V. A.

V. A. Banakh, V. M. Buldakov, and V. L. Mironov, Opt. Commun. 54, 1054 (1983).

Baykal, Y.

Brown, T.

Buldakov, V. M.

V. A. Banakh, V. M. Buldakov, and V. L. Mironov, Opt. Commun. 54, 1054 (1983).

Cai, Y.

Davidson, F. M.

Dogariu, A.

O. Korotkova, M. Salem, A. Dogariu, and E. Wolf, Waves Random Media 15, 353 (2005).
[CrossRef]

M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, Waves Random Media 14, 513 (2004).
[CrossRef]

Eyyuboglu, H. T.

Flatté, S. M.

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, 2001).
[CrossRef]

Klein, L.

Korotkova, O.

O. Korotkova, Opt. Commun. 281, 2342 (2008).

O. Korotkova, M. Salem, A. Dogariu, and E. Wolf, Waves Random Media 15, 353 (2005).
[CrossRef]

O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. (Bellingham) 43, 330 (2004).
[CrossRef]

M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, Waves Random Media 14, 513 (2004).
[CrossRef]

Kozawa, Y.

Leader, J. C.

Lin, Q.

Martin, J. M.

Mironov, V. L.

V. A. Banakh, V. M. Buldakov, and V. L. Mironov, Opt. Commun. 54, 1054 (1983).

Moloney, J. C.

Peleg, A.

Phillips, R. L.

O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. (Bellingham) 43, 330 (2004).
[CrossRef]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Press, 1998).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, 2001).
[CrossRef]

Polynkin, P.

Pu, J.

T. Wang and J. Pu, Opt. Commun. 281, 3617 (2008).
[CrossRef]

Rhoadarmer, T.

Ricklin, J. C.

Salem, M.

O. Korotkova, M. Salem, A. Dogariu, and E. Wolf, Waves Random Media 15, 353 (2005).
[CrossRef]

M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, Waves Random Media 14, 513 (2004).
[CrossRef]

Sato, S.

Schulz, T. J.

Wang, T.

T. Wang and J. Pu, Opt. Commun. 281, 3617 (2008).
[CrossRef]

Wheelon, A. D.

A. D. Wheelon, Electromagnetic Scintillation II. Weak Scattering (Cambridge U. Press, 2003).

Wolf, E.

O. Korotkova, M. Salem, A. Dogariu, and E. Wolf, Waves Random Media 15, 353 (2005).
[CrossRef]

M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, Waves Random Media 14, 513 (2004).
[CrossRef]

Youngworth, K.

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Commun. (3)

O. Korotkova, Opt. Commun. 281, 2342 (2008).

T. Wang and J. Pu, Opt. Commun. 281, 3617 (2008).
[CrossRef]

V. A. Banakh, V. M. Buldakov, and V. L. Mironov, Opt. Commun. 54, 1054 (1983).

Opt. Eng. (Bellingham) (1)

O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. (Bellingham) 43, 330 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Waves Random Media (2)

M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, Waves Random Media 14, 513 (2004).
[CrossRef]

O. Korotkova, M. Salem, A. Dogariu, and E. Wolf, Waves Random Media 15, 353 (2005).
[CrossRef]

Other (3)

A. D. Wheelon, Electromagnetic Scintillation II. Weak Scattering (Cambridge U. Press, 2003).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Press, 1998).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simulation of the scintillation index of beams of different structure on propagation through 5 km of turbulence. Here the wavelength is taken to be λ = 1.55 μ m , the turbulence strength is C n 2 = 10 14 m 2 3 , and the width of the beam is taken to be w 0 = 0.05 m .

Fig. 2
Fig. 2

Scintillation of beams of different mode structure as a function of the Rytov variance σ 1 2 = 1.23 C n 2 k 7 6 L 11 6 . For the simulations, the wavelength is taken to be λ = 1.55 μ m , the turbulence strength is C n 2 = 10 14 m 2 3 , and the width of the beam is taken to be w 0 = 0.05 m .

Fig. 3
Fig. 3

Calculations of the mean intensity using the extended Huygens–Fresnel principle with quadratic approximation for the turbulence, with λ = 1.55 μ m , C n 2 = 10 14 m 2 3 , and w 0 = 0.05 m . (a) Evolution of the on-axis intensity of an LG 00 and LG 01 beam on propagation, for the optimal ratio of intensities given in Fig. 1. It can be seen that the intensities become nearly equal after 5 km . (b) Transverse profile of the LG 00 and LG 01 beams at L = 5 km .

Fig. 4
Fig. 4

Major axis of polarization of the field in (a) the source plane, L = 0 , and (b) the detector plane, L = 5 km . In the detector plane, interference between the two modes is replaced with an effective scrambling of the state of polarization. The beam and turbulence parameters are the same as the ones in Figs. 1, 2, 3.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U 00 ( x , y ) = 2 π w 0 2 exp ( x 2 + y 2 w 0 2 ) ,
U 01 ( x , y ) = 2 π w 0 2 ( x + i y ) exp ( x 2 + y 2 w 0 2 ) .
U n m ( x , y ) 2 d x d y = 1 ,
σ 1 2 = 1.23 C n 2 k 7 6 L 11 6 .

Metrics