Abstract

We numerically study low-threshold supercontinuum generation using the significant enhancement of nonlinearity in aqueous colloids with silver nanoparticles. We predict octave-spanning spectral broadening by femtosecond pulses with an intensity in the range of tens of GW/cm2. The strong frequency dependence of the effective nonlinear coefficient of the composite significantly influences the spectral broadening by self-phase modulation and leads to a large blueshift of the spectra.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  2. J. M. Dudley, G. Gentry, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  3. A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  4. M. A. Foster and A. L. Gaeta, Opt. Express 12, 3137 (2004).
    [CrossRef] [PubMed]
  5. D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, Opt. Lett. 33, 660 (2008).
    [CrossRef] [PubMed]
  6. M. Pelton, J. Aizpurua, and G. Bryant, Laser Photonics Rev. 2, 136 (2008).
    [CrossRef]
  7. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
    [CrossRef] [PubMed]
  8. S. Besner, A. V. Kabashin, and M. Meunier, Appl. Phys. A 88, 269 (2007).
    [CrossRef]
  9. C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, Appl. Phys. Lett. 90, 181119 (2007).
    [CrossRef]
  10. J. C. Maxwell Garnett, Philos. Trans. R. Soc. London 203, 385 (1904).
    [CrossRef]
  11. M. Khashan and A. Nassif, Appl. Opt. 36, 6843 (1997).
    [CrossRef]
  12. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  13. J. E. Sipe and R. W. Boyd, Phys. Rev. A 46, 1614 (1992).
    [CrossRef] [PubMed]
  14. E. L. Falcão-Filho, C. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, J. Opt. Soc. Am. B 22, 2444 (2005).
    [CrossRef]
  15. R. A. Ganeev, M. Baba, A. I. Ryasnyanskii, M. Suzuki, and H. Kuroda, Opt. Spectrosc. 99, 668 (2005).
    [CrossRef]
  16. L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, Appl. Phys. B 92, 61 (2008).
    [CrossRef]

2008 (3)

M. Pelton, J. Aizpurua, and G. Bryant, Laser Photonics Rev. 2, 136 (2008).
[CrossRef]

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, Appl. Phys. B 92, 61 (2008).
[CrossRef]

D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, Opt. Lett. 33, 660 (2008).
[CrossRef] [PubMed]

2007 (2)

S. Besner, A. V. Kabashin, and M. Meunier, Appl. Phys. A 88, 269 (2007).
[CrossRef]

C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, Appl. Phys. Lett. 90, 181119 (2007).
[CrossRef]

2006 (1)

J. M. Dudley, G. Gentry, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

2005 (3)

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

E. L. Falcão-Filho, C. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, J. Opt. Soc. Am. B 22, 2444 (2005).
[CrossRef]

R. A. Ganeev, M. Baba, A. I. Ryasnyanskii, M. Suzuki, and H. Kuroda, Opt. Spectrosc. 99, 668 (2005).
[CrossRef]

2004 (1)

2001 (1)

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

2000 (1)

1997 (1)

1992 (1)

J. E. Sipe and R. W. Boyd, Phys. Rev. A 46, 1614 (1992).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1904 (1)

J. C. Maxwell Garnett, Philos. Trans. R. Soc. London 203, 385 (1904).
[CrossRef]

Aizpurua, J.

M. Pelton, J. Aizpurua, and G. Bryant, Laser Photonics Rev. 2, 136 (2008).
[CrossRef]

Baba, M.

R. A. Ganeev, M. Baba, A. I. Ryasnyanskii, M. Suzuki, and H. Kuroda, Opt. Spectrosc. 99, 668 (2005).
[CrossRef]

Besner, S.

S. Besner, A. V. Kabashin, and M. Meunier, Appl. Phys. A 88, 269 (2007).
[CrossRef]

Boyd, R. W.

J. E. Sipe and R. W. Boyd, Phys. Rev. A 46, 1614 (1992).
[CrossRef] [PubMed]

Brito-Silva, A. M.

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, Appl. Phys. B 92, 61 (2008).
[CrossRef]

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, Laser Photonics Rev. 2, 136 (2008).
[CrossRef]

Cheng, Y.

C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, Appl. Phys. Lett. 90, 181119 (2007).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Coen, S.

J. M. Dudley, G. Gentry, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

de Araújo, C.

de Araújo, C. B.

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, Appl. Phys. B 92, 61 (2008).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Gentry, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Eggleton, B. J.

Eisler, H. J.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Falcão-Filho, E. L.

Foster, M. A.

Fu, L.

Fu, Y.

C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, Appl. Phys. Lett. 90, 181119 (2007).
[CrossRef]

Gaeta, A. L.

Galembeck, A.

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, Appl. Phys. B 92, 61 (2008).
[CrossRef]

E. L. Falcão-Filho, C. de Araújo, A. Galembeck, M. M. Oliveira, and A. J. G. Zarbin, J. Opt. Soc. Am. B 22, 2444 (2005).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev, M. Baba, A. I. Ryasnyanskii, M. Suzuki, and H. Kuroda, Opt. Spectrosc. 99, 668 (2005).
[CrossRef]

Gentry, G.

J. M. Dudley, G. Gentry, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Gómez, L. A.

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, Appl. Phys. B 92, 61 (2008).
[CrossRef]

Hecht, B.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Herrmann, J.

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Husakou, A. V.

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kabashin, A. V.

S. Besner, A. V. Kabashin, and M. Meunier, Appl. Phys. A 88, 269 (2007).
[CrossRef]

Khashan, M.

Kuroda, H.

R. A. Ganeev, M. Baba, A. I. Ryasnyanskii, M. Suzuki, and H. Kuroda, Opt. Spectrosc. 99, 668 (2005).
[CrossRef]

Lamont, M. R. E.

Mägi, E. C.

Martin, O. J. F.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, Philos. Trans. R. Soc. London 203, 385 (1904).
[CrossRef]

Meunier, M.

S. Besner, A. V. Kabashin, and M. Meunier, Appl. Phys. A 88, 269 (2007).
[CrossRef]

Muhlschlegel, P.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Nassif, A.

Oliveira, M. M.

Pelton, M.

M. Pelton, J. Aizpurua, and G. Bryant, Laser Photonics Rev. 2, 136 (2008).
[CrossRef]

Pohl, D. W.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Ranka, J. K.

Roelens, M. A. F.

Ryasnyanskii, A. I.

R. A. Ganeev, M. Baba, A. I. Ryasnyanskii, M. Suzuki, and H. Kuroda, Opt. Spectrosc. 99, 668 (2005).
[CrossRef]

Sipe, J. E.

J. E. Sipe and R. W. Boyd, Phys. Rev. A 46, 1614 (1992).
[CrossRef] [PubMed]

Stentz, A. J.

Suzuki, M.

R. A. Ganeev, M. Baba, A. I. Ryasnyanskii, M. Suzuki, and H. Kuroda, Opt. Spectrosc. 99, 668 (2005).
[CrossRef]

Wang, C.

C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, Appl. Phys. Lett. 90, 181119 (2007).
[CrossRef]

Windeler, R. S.

Xu, Z.

C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, Appl. Phys. Lett. 90, 181119 (2007).
[CrossRef]

Yeom, D.

Zarbin, A. J. G.

Zhou, Z.

C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, Appl. Phys. Lett. 90, 181119 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

S. Besner, A. V. Kabashin, and M. Meunier, Appl. Phys. A 88, 269 (2007).
[CrossRef]

Appl. Phys. B (1)

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, Appl. Phys. B 92, 61 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

C. Wang, Y. Fu, Z. Zhou, Y. Cheng, and Z. Xu, Appl. Phys. Lett. 90, 181119 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

M. Pelton, J. Aizpurua, and G. Bryant, Laser Photonics Rev. 2, 136 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Spectrosc. (1)

R. A. Ganeev, M. Baba, A. I. Ryasnyanskii, M. Suzuki, and H. Kuroda, Opt. Spectrosc. 99, 668 (2005).
[CrossRef]

Philos. Trans. R. Soc. London (1)

J. C. Maxwell Garnett, Philos. Trans. R. Soc. London 203, 385 (1904).
[CrossRef]

Phys. Rev. A (1)

J. E. Sipe and R. W. Boyd, Phys. Rev. A 46, 1614 (1992).
[CrossRef] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Gentry, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Science (1)

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Linear properties of the colloid. Dispersion coefficient β ( ω ) = 2 k eff / ω 2 and linear loss coefficient α = Im ( k eff ( ω ) ) . Hereafter filling factor f = 0.1 .

Fig. 2
Fig. 2

Nonlinear properties of the colloid. Real and imaginary parts of the nonlinear coefficient n 2 ( ω ) = 3 χ 3 , eff / ( 4 c ϵ eff ϵ 0 ) .

Fig. 3
Fig. 3

SC generation in aqueous colloid with silver NPs. For 20 fs pulse with central wavelength of 830 nm and intensity of 27.8   GW / cm 2 , (a) the temporal shape, (b) the spectrum of the realistic (solid curve) and frequency-independent model (dashed curve), and (c) the spectrum for larger input pulses of 40 fs (solid curve) and 100 fs (dashed curve) are shown after the propagation of a 8.3 μ m through the composite.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

χ 3 , eff = χ 3 , Ag f | ϵ eff + 2 ϵ h ϵ i + 2 ϵ h | 2 ( ϵ eff + 2 ϵ h ϵ i + 2 ϵ h ) 2 .
E ( z , ω ) z = i ω ( n eff ( ω ) n g ) c E ( z , ω ) + i ω P NL ( z , ω ) 2 n eff ( ω ) ϵ 0 c ,
P NL ( z , ω ) = χ 3 , eff ( ω ) ϵ 0 F ̃ [ E ( z , t ) 3 ] .

Metrics