Abstract

Two-beam coupling gain enhancement is demonstrated for a nontraditional orientation of counterpropagating waves in the monoclinic crystal Sn2P2S6.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
    [CrossRef]
  2. R. Mosimann, M. Jazbinšek, G. Montemezzani, A. Grabar, and P. Günter, Opt. Lett. 32, 3230 (2007).
    [CrossRef] [PubMed]
  3. D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
    [CrossRef]
  4. L. Solymar, D. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).
  5. T. Bach, M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, J. Opt. Soc. Am. B 24, 1535 (2007).
    [CrossRef]
  6. S. Odoulov, A. Volkov, A. Shumelyuk, D. R. Evans, and G. Cook, Opt. Express 16, 16923 (2008).
    [CrossRef] [PubMed]
  7. B. Boulanger, Y. Petit, P. Segonds, C. Félix, B. Ménaert, J. Zaccaro, and G. Aka, Opt. Express 16, 7997 (2008).
    [CrossRef] [PubMed]
  8. V. M. Kedyulich, A. G. Slivka, E. I. Gerzanich, P. P. Guranchich, V. S. Shusta, and P. M. Lukash, Uzhgorod University Bulletin, Ser. 5, 30 (1999).
  9. A. A. Volkov, G. V. Kozlov, N. I. Afanas'eva, Y. M. Vysochanskii, A. A. Grabar, and V. Y. Slivka, Sov. Phys. Solid State 25, 1482 (1983).
  10. We use here and in what follows the Cartesian settings as described in , with the z axis parallel to the crystallographic [001] direction and the y axis normal to the mirror plane.
  11. A. Shumelyuk, D. Barilov, S. Odoulov, and E. Kraetzig, Appl. Phys. B 76, 417 (2003).
    [CrossRef]
  12. A. Shumelyuk, A. Volkov, A. Selinger, M. Imlau, and S. Odoulov, Opt. Lett. 33, 150 (2008).
    [CrossRef] [PubMed]

2008

2007

2003

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Kraetzig, Appl. Phys. B 76, 417 (2003).
[CrossRef]

1999

V. M. Kedyulich, A. G. Slivka, E. I. Gerzanich, P. P. Guranchich, V. S. Shusta, and P. M. Lukash, Uzhgorod University Bulletin, Ser. 5, 30 (1999).

1983

A. A. Volkov, G. V. Kozlov, N. I. Afanas'eva, Y. M. Vysochanskii, A. A. Grabar, and V. Y. Slivka, Sov. Phys. Solid State 25, 1482 (1983).

Afanas'eva, N. I.

A. A. Volkov, G. V. Kozlov, N. I. Afanas'eva, Y. M. Vysochanskii, A. A. Grabar, and V. Y. Slivka, Sov. Phys. Solid State 25, 1482 (1983).

Aka, G.

Bach, T.

Barilov, D.

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Kraetzig, Appl. Phys. B 76, 417 (2003).
[CrossRef]

Boulanger, B.

Caimi, G.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

Cook, G.

Evans, D. R.

Félix, C.

Gerzanich, E. I.

V. M. Kedyulich, A. G. Slivka, E. I. Gerzanich, P. P. Guranchich, V. S. Shusta, and P. M. Lukash, Uzhgorod University Bulletin, Ser. 5, 30 (1999).

Grabar, A.

R. Mosimann, M. Jazbinšek, G. Montemezzani, A. Grabar, and P. Günter, Opt. Lett. 32, 3230 (2007).
[CrossRef] [PubMed]

A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
[CrossRef]

Grabar, A. A.

T. Bach, M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, J. Opt. Soc. Am. B 24, 1535 (2007).
[CrossRef]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

A. A. Volkov, G. V. Kozlov, N. I. Afanas'eva, Y. M. Vysochanskii, A. A. Grabar, and V. Y. Slivka, Sov. Phys. Solid State 25, 1482 (1983).

Grunnet-Jepsen, A.

L. Solymar, D. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).

Günter, P.

T. Bach, M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, J. Opt. Soc. Am. B 24, 1535 (2007).
[CrossRef]

R. Mosimann, M. Jazbinšek, G. Montemezzani, A. Grabar, and P. Günter, Opt. Lett. 32, 3230 (2007).
[CrossRef] [PubMed]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
[CrossRef]

Guranchich, P. P.

V. M. Kedyulich, A. G. Slivka, E. I. Gerzanich, P. P. Guranchich, V. S. Shusta, and P. M. Lukash, Uzhgorod University Bulletin, Ser. 5, 30 (1999).

Haertle, D.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

Haldi, A.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

Imlau, M.

Jazbinšek, M.

R. Mosimann, M. Jazbinšek, G. Montemezzani, A. Grabar, and P. Günter, Opt. Lett. 32, 3230 (2007).
[CrossRef] [PubMed]

T. Bach, M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, J. Opt. Soc. Am. B 24, 1535 (2007).
[CrossRef]

A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
[CrossRef]

Kedyulich, V. M.

V. M. Kedyulich, A. G. Slivka, E. I. Gerzanich, P. P. Guranchich, V. S. Shusta, and P. M. Lukash, Uzhgorod University Bulletin, Ser. 5, 30 (1999).

Kozlov, G. V.

A. A. Volkov, G. V. Kozlov, N. I. Afanas'eva, Y. M. Vysochanskii, A. A. Grabar, and V. Y. Slivka, Sov. Phys. Solid State 25, 1482 (1983).

Kraetzig, E.

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Kraetzig, Appl. Phys. B 76, 417 (2003).
[CrossRef]

Lukash, P. M.

V. M. Kedyulich, A. G. Slivka, E. I. Gerzanich, P. P. Guranchich, V. S. Shusta, and P. M. Lukash, Uzhgorod University Bulletin, Ser. 5, 30 (1999).

Ménaert, B.

Montemezzani, G.

T. Bach, M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, J. Opt. Soc. Am. B 24, 1535 (2007).
[CrossRef]

R. Mosimann, M. Jazbinšek, G. Montemezzani, A. Grabar, and P. Günter, Opt. Lett. 32, 3230 (2007).
[CrossRef] [PubMed]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
[CrossRef]

Mosimann, R.

Odoulov, S.

Petit, Y.

Segonds, P.

Selinger, A.

Shumelyuk, A.

A. Shumelyuk, A. Volkov, A. Selinger, M. Imlau, and S. Odoulov, Opt. Lett. 33, 150 (2008).
[CrossRef] [PubMed]

S. Odoulov, A. Volkov, A. Shumelyuk, D. R. Evans, and G. Cook, Opt. Express 16, 16923 (2008).
[CrossRef] [PubMed]

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Kraetzig, Appl. Phys. B 76, 417 (2003).
[CrossRef]

A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
[CrossRef]

Shusta, V. S.

V. M. Kedyulich, A. G. Slivka, E. I. Gerzanich, P. P. Guranchich, V. S. Shusta, and P. M. Lukash, Uzhgorod University Bulletin, Ser. 5, 30 (1999).

Slivka, A. G.

V. M. Kedyulich, A. G. Slivka, E. I. Gerzanich, P. P. Guranchich, V. S. Shusta, and P. M. Lukash, Uzhgorod University Bulletin, Ser. 5, 30 (1999).

Slivka, V. Y.

A. A. Volkov, G. V. Kozlov, N. I. Afanas'eva, Y. M. Vysochanskii, A. A. Grabar, and V. Y. Slivka, Sov. Phys. Solid State 25, 1482 (1983).

Solymar, L.

L. Solymar, D. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).

Stoika, I. M.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

Volkov, A.

Volkov, A. A.

A. A. Volkov, G. V. Kozlov, N. I. Afanas'eva, Y. M. Vysochanskii, A. A. Grabar, and V. Y. Slivka, Sov. Phys. Solid State 25, 1482 (1983).

Vysochanskii, Y. M.

T. Bach, M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, J. Opt. Soc. Am. B 24, 1535 (2007).
[CrossRef]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

A. A. Volkov, G. V. Kozlov, N. I. Afanas'eva, Y. M. Vysochanskii, A. A. Grabar, and V. Y. Slivka, Sov. Phys. Solid State 25, 1482 (1983).

Vysochanskii, Yu. M.

A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
[CrossRef]

Webb, D.

L. Solymar, D. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).

Zaccaro, J.

Appl. Phys. B

A. Shumelyuk, D. Barilov, S. Odoulov, and E. Kraetzig, Appl. Phys. B 76, 417 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, Opt. Commun. 215, 333 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Sov. Phys. Solid State

A. A. Volkov, G. V. Kozlov, N. I. Afanas'eva, Y. M. Vysochanskii, A. A. Grabar, and V. Y. Slivka, Sov. Phys. Solid State 25, 1482 (1983).

Uzhgorod University Bulletin, Ser.

V. M. Kedyulich, A. G. Slivka, E. I. Gerzanich, P. P. Guranchich, V. S. Shusta, and P. M. Lukash, Uzhgorod University Bulletin, Ser. 5, 30 (1999).

Other

We use here and in what follows the Cartesian settings as described in , with the z axis parallel to the crystallographic [001] direction and the y axis normal to the mirror plane.

L. Solymar, D. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).

A. Grabar, M. Jazbinšek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer-Verlag, 2007), pp. 327-362.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Calculated dependence of the gain factor on direction angle of grating vector K in the x y plane and eigenpolarizations of the recording waves.

Fig. 2
Fig. 2

Experimental setup for gain measurement. With a beam splitter (BS), the two recording beams, signal and pump, are formed from the He–Ne laser beam, which is expanded with a telescope (T). The PRC is placed into the CUV filled with the index-matching oil. Its angle with respect to the recording waves can be adjusted with the RMS. Two phase retarders λ / 2 are used to adjust the eigenpolarization of the recording waves for any particular sample tilt angle. The shutter (Sh) is used to open and close the pump beam; the transmitted signal beam intensity is measured with the detector (D).

Fig. 3
Fig. 3

Dependences of the gain factor on the direction angle of grating vector K in x y plane and eigenpolarization of the recording waves. Dots and squares show data measured for two eigenpolarizations, perpendicular and parallel, respectively. The solid curves are the best fits of the calculated dependences to the experimental data.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Γ = ( 2 π K n 3 r eff λ ) ( k B T e ) ( 1 1 + s 2 K 2 ) ,
Γ = ( 2 π 2 n 4 λ 2 ) ( N eff r eff ϵ ϵ 0 ) .
r ̂ = ( r x x x 0 r x x z r y y x 0 r y y z r z z x 0 r z z z 0 r y z y 0 r x z x 0 r z x z 0 r y x y 0 )
ϵ eff = ϵ y y sin 2 β + ϵ x x cos 2 β .
r eff = ( r x x x 2 r y x y ) sin 2 β   cos   β cos 2 ν + r y y x cos 3 β cos 2 ν + r z z x   cos   β sin 2 ν 0.5 ( r x z x r y z y ) sin   2 β   sin   2 ν ,
r eff = ( r x x x 2 r y x y ) sin 2 β   cos   β sin 2 ν + r y y x cos 3 β sin 2 ν + r z z x   cos   β cos 2 ν 0.5 ( r x z x r y z y ) sin   2 β   sin   2 ν .
Γ = 1 ln I s I s 0

Metrics