Abstract

Real-time Fourier-transformation-based ranging lidar using a mode-locked femtosecond fiber laser is demonstrated. The object signal and the reference signal are guided from a fiber Mach–Zehnder interferometer into a dispersive element. The two optical pulses extend and overlap with each other temporally, which yields a microwave pulse on the photodetector with its frequency proportional to the time delay between the two signals. The temporal interferograms are transformed from the time domain into the frequency domain using a time-to-frequency conversion function obtained in the calibration process. The Fourier transform is used in the data processing. A range resolution of 334 nm at a sampling rate of 48.6 MHz over a distance of 16 cm is demonstrated in the laboratory.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Huffaker and R. M. Hardesty, Proc. IEEE 84, 181 (1996).
    [CrossRef]
  2. H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, Appl. Opt. 46, 7120 (2007).
    [CrossRef] [PubMed]
  3. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, Opt. Lett. 31, 3046 (2006).
    [CrossRef] [PubMed]
  4. K. Minoshima and H. Matsumoto, Appl. Opt. 39, 5512 (2000).
    [CrossRef]
  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
    [CrossRef] [PubMed]
  6. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, Opt. Lett. 31, 1997 (2006).
    [CrossRef] [PubMed]
  7. J. Ye, Opt. Lett. 29, 1153 (2004).
    [CrossRef] [PubMed]
  8. K.-N. Joo and S.-W. Kim, Opt. Express 14, 5954 (2006).
    [CrossRef] [PubMed]
  9. W. C. Swann and N. R. Newbury, Opt. Lett. 31, 826 (2006).
    [CrossRef] [PubMed]
  10. T. Jannson, Opt. Lett. 8, 232 (1983).
    [CrossRef] [PubMed]
  11. A. Papoulis, J. Opt. Soc. Am. A 11, 3 (1994).
    [CrossRef]

2007 (1)

2006 (4)

2004 (1)

2000 (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

K. Minoshima and H. Matsumoto, Appl. Opt. 39, 5512 (2000).
[CrossRef]

1996 (1)

R. M. Huffaker and R. M. Hardesty, Proc. IEEE 84, 181 (1996).
[CrossRef]

1994 (1)

1983 (1)

Coddington, I.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Dong, J.

Feder, K. S.

Fejer, M. M.

Fermann, M. E.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Hardesty, R. M.

R. M. Huffaker and R. M. Hardesty, Proc. IEEE 84, 181 (1996).
[CrossRef]

Hartl, I.

Huffaker, R. M.

R. M. Huffaker and R. M. Hardesty, Proc. IEEE 84, 181 (1996).
[CrossRef]

Jannson, T.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Joo, K. -N.

Kim, S. -W.

Kobayashi, T.

Langrock, C.

Matsumoto, H.

McFerran, J. J.

Minoshima, K.

Newbury, N. R.

Nicholson, J. W.

Papoulis, A.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Shen, F.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Sun, D.

Swann, W. C.

Washburn, B. R.

Westbrook, P. S.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Xia, H.

Yang, Y.

Ye, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

System layout. FSFL, femtosecond fiber laser; C, optical coupler; PC, polarization controller; PZT, piezoelectric tube; PD, photodetector.

Fig. 2
Fig. 2

Time-to-frequency conversion function.

Fig. 3
Fig. 3

(a) Temporal interferograms recorded at the zero point, (b) inverse Fourier transform results shown on a logarithmic scale. Inset, partial view of the main sideband shown on a linear scale.

Fig. 4
Fig. 4

Comparison between the preset positions and the measurements. Data are shown in the format of (standard deviation, mean error).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

a ̂ 1 ( t ) exp [ j t 2 / 2 β 2 L ] A ̂ 0 ( t / β 2 L ) ,
h ( t ) = [ δ ( t ) + δ ( t + τ ) ] / 2 ,
i ( t ) = R a ̂ 2 ( t ) a ̂ 2 ( t ) = 1 4 R { | A 0 ( ω ) | 2 + | A 0 ( ω + Δ ω ) | 2 + 2 | A 0 ( ω ) | | A 0 ( ω + Δ ω ) | cos [ ω τ + Δ φ ( ω ) ] } ω = t / β 2 L ,
i ( t ) = R I 0 ( t / β 2 L ) [ 1 + cos ( τ t / β 2 L ) ] / 2.
I ( ω ) = R I 0 ( ω ) [ 1 + cos ( ω τ ) ] / 2.
f = 192.423 + 0.1293 t + 1.958 × 10 4 t 2 ,

Metrics