Abstract

Efficient optical parametric oscillation is demonstrated in periodically poled stoichiometric lithium tantalate crystal pumped by a mode-locked Ti:sapphire laser. The optical parametric oscillator (OPO) delivers a maximum average power of more than 345mW in signal and 180mW in idler beams. The OPO is continuously tunable across the 9401350nm wavelength range in its signal branch, delivering nearly transform-limited 160180fs pulses. Despite the onset of high absorption loss in the crystal in the mid-IR, more than 40mW of power is obtained for the idler beam tunable within the 4.34.6μm wavelength range. The high parametric gain in the crystal allows tunable OPO operation at a repetition rate as high as 760MHz with 50mW of output power.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. E. Powers, R. J. Ellingson, W. S. Pelouch, and C. L. Tang, J. Opt. Soc. Am. B 10, 2162 (1993).
    [CrossRef]
  2. D. De'barre and E. Beaurepaire, Biophys. J. 92, 603 (2007).
    [CrossRef]
  3. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  4. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
    [CrossRef]
  5. M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, Opt. Lett. 29, 1775 (2004).
    [CrossRef] [PubMed]
  6. M. E. Klein, D.-H. Lee, J.-P. Meyn, B. Beier, K.-J. Boller, and R. Wallenstein, Opt. Lett. 23, 831 (1998).
    [CrossRef]
  7. G. K. Samanta, G. R. Fayaz, and M. Ebrahim-Zadeh, Opt. Lett. 32, 2623 (2007).
    [CrossRef] [PubMed]
  8. Shih-Yu Tu, A. H. Kung, Z. D. Gao, and S. N. Zhu, Opt. Lett. 30, 2451 (2005).
    [CrossRef] [PubMed]
  9. T. Südmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, D. C. Hanna, and U. Keller, Opt. Lett. 29, 1111 (2004).
    [CrossRef] [PubMed]
  10. A. Esteban-Martin, O. Kokabee, K. Moutzouris, and M. Ebrahim-Zadeh, Opt. Lett. 34, 428 (2009).
    [CrossRef] [PubMed]
  11. J. Jiang and T. Hasama, Appl. Phys. B 74, 313 (2002).
    [CrossRef]
  12. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, Opt. Lett. 28, 194 (2003).
    [CrossRef] [PubMed]

2009 (1)

2007 (2)

2005 (1)

2004 (2)

2003 (1)

2002 (1)

J. Jiang and T. Hasama, Appl. Phys. B 74, 313 (2002).
[CrossRef]

2001 (1)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
[CrossRef]

1998 (1)

1995 (1)

1993 (1)

Alexandrovski, A.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
[CrossRef]

Beaurepaire, E.

D. De'barre and E. Beaurepaire, Biophys. J. 92, 603 (2007).
[CrossRef]

Beier, B.

Blau, P.

Boller, K.-J.

Bosenberg, W. R.

Bruner, A.

Brunner, F.

Byer, R. L.

De'barre, D.

D. De'barre and E. Beaurepaire, Biophys. J. 92, 603 (2007).
[CrossRef]

Ebrahim-Zadeh, M.

Eckardt, R. C.

Eger, D.

Ellingson, R. J.

Esteban-Martin, A.

Fayaz, G. R.

Fejer, M. M.

Foulon, G.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
[CrossRef]

Furukawa, Y.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
[CrossRef]

Gao, Z. D.

Hanna, D. C.

Hasama, T.

J. Jiang and T. Hasama, Appl. Phys. B 74, 313 (2002).
[CrossRef]

Hum, D. S.

Innerhofer, E.

Ito, H.

Jiang, J.

J. Jiang and T. Hasama, Appl. Phys. B 74, 313 (2002).
[CrossRef]

Katz, M.

Keller, U.

Kitamura, K.

Klein, M. E.

Kokabee, O.

Kung, A. H.

Kurimura, S.

Lee, D.-H.

Meyn, J.-P.

Miller, G. D.

Moutzouris, K.

Myers, L. E.

Oron, M. B.

Parameswaran, K. R.

Paschotta, R.

Pelouch, W. S.

Pierce, J. W.

Powers, P. E.

Route, R. K.

M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, Opt. Lett. 29, 1775 (2004).
[CrossRef] [PubMed]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
[CrossRef]

Ruschin, S.

Samanta, G. K.

Südmeyer, T.

Tang, C. L.

Tu, Shih-Yu

Usami, T.

Wallenstein, R.

Zhu, S. N.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. P1, P2, SF10 glass prisms; OC, 5% output coupler; BS, beam splitter; PM, power meter; AC, intensity autocorrelator; OSA, optical spectrum analyzer; Mono, grating monochromator ( 300   grooves mm ) ; F, optical filter; PD1, PD2, fast InGaAs photodiodes.

Fig. 2
Fig. 2

Signal beam power output versus pump power. The pump beam wavelength was set to 811 nm , the PPSLT crystal chip QPM period was 23 μ m , and the crystal temperature was kept at 150 ° C . Inset, measured autocorrelation functions for the signal pulse for the cavity with (thick solid curve) and without (thin solid curve) dispersion compensation, and an autocorrelation trace for the pump pulse (dashed curve).

Fig. 3
Fig. 3

Recorded oscilloscope traces for OPO operation at 760 MHz (tenth harmonic of the fundamental). The upper trace represents the pulse train from the OPO at the signal wavelength, while the lower trace is the photodiode signal that detects mode-locked Ti:sapphire laser output. The horizontal scale on the oscilloscope was set to 2 ns division .

Fig. 4
Fig. 4

Representative spectra for the PPSLT OPO within the signal wave branch. The wavelength range along the dashed horizontal line can be continuously covered by the cavity length tuning while other experimental conditions are kept the same as for the data of Fig. 2. For the spectra recorder within the 940 1020 nm wavelength range the pump wavelength was tuned to 770 nm , the PPSLT chip period was chosen to be 21.2 μ m , and the crystal temperature was kept at 160 ° C .

Fig. 5
Fig. 5

(a) PPSLT OPO idler pulse spectrum at around 4.5 μ m . (b) Idler and corresponding signal pulse cross-correlation trace (thick solid curve). The dashed curve represents the signal pulse autocorrelation. The pump beam wavelength was set to 867 nm . The PPSLT crystal QPM period was 23 μ m , and the crystal temperature was kept at 130 ° C .

Metrics