Abstract

Traditionally, reconfigurable optical pulse shaping is performed by using programmable spatial light modulators or tunable optical attenuators and phase shifters. We propose a technique to achieve tunability in the line-by-line pulse-shaping regime by controlling the offset frequency of an optical frequency comb. The method requires a high-spectral-resolution line-by-line shaper with channel spacing equal to a submultiple of the comb spacing. As a particular example, we numerically analyze tunable pulse-repetition-rate multiplication by grating-based line-by-line pulse shaping using a fixed phase-only mask.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  2. K. Okamoto, T. Kominato, H. Yamada, and T. Goh, Electron. Lett. 35, 733 (1999).
    [CrossRef]
  3. C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, Opt. Lett. 19, 737 (1994).
    [CrossRef] [PubMed]
  4. E. Frumker, E. Tal, Y. Silberberg, and D. Majer, Opt. Lett. 30, 2796 (2005).
    [CrossRef] [PubMed]
  5. S. T. Cundiff, J. Ye, and J. L. Hall, Rev. Sci. Instrum. 72, 3749 (2001).
    [CrossRef]
  6. Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, Opt. Lett. 30, 1557 (2005).
    [CrossRef] [PubMed]
  7. Z. Jiang, D. E. Leaird, and A. M. Weiner, Opt. Express 13, 10431 (2005).
    [CrossRef] [PubMed]
  8. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nature Photon. 1, 463 (2007).
    [CrossRef]
  9. K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, Electron. Lett. 40, 537 (2004).
    [CrossRef]
  10. C.-B. Huang, D. E. Leaird, and A. M. Weiner, Opt. Lett. 32, 3242 (2007).
    [CrossRef] [PubMed]
  11. R. P. Scott, N. K. Fontaine, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. B. Yoo, Opt. Lett. 33, 1068 (2008).
    [CrossRef] [PubMed]
  12. J. Azaña and M. A. Muriel, IEEE J. Sel. Top. Quantum Electron. 7, 728 (2001).
    [CrossRef]
  13. J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, Opt. Lett. 32, 716 (2007).
    [CrossRef] [PubMed]
  14. J. T. Willits, A. M. Weiner, and S. T. Cundiff, Opt. Express 16, 315 (2008).
    [CrossRef] [PubMed]

2008

2007

2005

2004

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, Electron. Lett. 40, 537 (2004).
[CrossRef]

2001

S. T. Cundiff, J. Ye, and J. L. Hall, Rev. Sci. Instrum. 72, 3749 (2001).
[CrossRef]

J. Azaña and M. A. Muriel, IEEE J. Sel. Top. Quantum Electron. 7, 728 (2001).
[CrossRef]

2000

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

1999

K. Okamoto, T. Kominato, H. Yamada, and T. Goh, Electron. Lett. 35, 733 (1999).
[CrossRef]

1994

Azaña, J.

J. Azaña and M. A. Muriel, IEEE J. Sel. Top. Quantum Electron. 7, 728 (2001).
[CrossRef]

Caraquitena, J.

Cundiff, S. T.

J. T. Willits, A. M. Weiner, and S. T. Cundiff, Opt. Express 16, 315 (2008).
[CrossRef] [PubMed]

S. T. Cundiff, J. Ye, and J. L. Hall, Rev. Sci. Instrum. 72, 3749 (2001).
[CrossRef]

Fontaine, N. K.

Frumker, E.

Geisler, D. J.

Goh, T.

K. Okamoto, T. Kominato, H. Yamada, and T. Goh, Electron. Lett. 35, 733 (1999).
[CrossRef]

Goswami, D.

Hall, J. L.

S. T. Cundiff, J. Ye, and J. L. Hall, Rev. Sci. Instrum. 72, 3749 (2001).
[CrossRef]

Heritage, J. P.

Hillegas, C. W.

Huang, C.-B.

C.-B. Huang, D. E. Leaird, and A. M. Weiner, Opt. Lett. 32, 3242 (2007).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nature Photon. 1, 463 (2007).
[CrossRef]

Jiang, Z.

Kominato, T.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, Electron. Lett. 40, 537 (2004).
[CrossRef]

K. Okamoto, T. Kominato, H. Yamada, and T. Goh, Electron. Lett. 35, 733 (1999).
[CrossRef]

Leaird, D. E.

Majer, D.

Muriel, M. A.

J. Azaña and M. A. Muriel, IEEE J. Sel. Top. Quantum Electron. 7, 728 (2001).
[CrossRef]

Okamoto, K.

R. P. Scott, N. K. Fontaine, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. B. Yoo, Opt. Lett. 33, 1068 (2008).
[CrossRef] [PubMed]

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, Electron. Lett. 40, 537 (2004).
[CrossRef]

K. Okamoto, T. Kominato, H. Yamada, and T. Goh, Electron. Lett. 35, 733 (1999).
[CrossRef]

Scott, R. P.

Seo, D. S.

Shibata, T.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, Electron. Lett. 40, 537 (2004).
[CrossRef]

Silberberg, Y.

Strickland, D.

Takahashi, H.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, Electron. Lett. 40, 537 (2004).
[CrossRef]

Takiguchi, K.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, Electron. Lett. 40, 537 (2004).
[CrossRef]

Tal, E.

Tull, J. X.

Warren, W. S.

Weiner, A. M.

Willits, J. T.

Yamada, H.

K. Okamoto, T. Kominato, H. Yamada, and T. Goh, Electron. Lett. 35, 733 (1999).
[CrossRef]

Yang, C.

Ye, J.

S. T. Cundiff, J. Ye, and J. L. Hall, Rev. Sci. Instrum. 72, 3749 (2001).
[CrossRef]

Yoo, S. J. B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of pulse shaping in the (a) groups of lines and (b) line-by-line regimes.

Fig. 2
Fig. 2

Concept of tunable line-by-line pulse shaping by offset-frequency control. (a) For 0% offset frequency, a specific periodic waveform is generated. (b) For 50% offset, a different waveform is obtained by using the same fixed mask.

Fig. 3
Fig. 3

Tunable Talbot-based repetition-rate multiplication with an ideal line-by-line shaper. (a) Input frequency comb and pulse train. (b) Two-times repetition-rate multiplication for 0% comb offset frequency. (c) Three-times repetition-rate multiplication for 50% offset.

Fig. 4
Fig. 4

(a) Phase and (b) intensity filter functions (solid curves) together with the optical comb for zero relative offset frequency. The mask function is also represented (dashed curves).

Fig. 5
Fig. 5

Simulation results of tunable Talbot-based repetition-rate-multiplication with grating-based line-by-line pulse shaping. For intermediate (25%) offsets, a transient pulse train between the two multiplied versions is obtained.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f rep f o = n ,
φ ( f m ) = s r π m 2 ,
H ( ω ) = ( 2 π w o 2 ) 1 2 M ( x ) e 2 ( x α ω ) 2 w o 2 d x ,

Metrics