Abstract

We report a threefold enhancement of light-emission intensity at λ=460nm and a 16-fold extraction-efficiency enhancement measured from a 2D array of nanorod LEDs. The nano-LEDs are randomly arranged and have a typical rod diameter of 100250nm. From a combination of photoluminescence, reflectance, and excitation power-dependence measurements, we show that the enhanced emission is due mainly to modification of the extraction efficiency, and not to that of the internal efficiency. Furthermore, we show that the extraction enhancement originates from the randomness of the 2D array that scatters light efficiently into the air and the smallness of the nanorods that eliminates the guiding modes that trap light.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409, 66 (2001).
    [CrossRef] [PubMed]
  2. W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, Adv. Mater. (Weinheim, Ger.) 15, 526 (2003).
    [CrossRef]
  3. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, Appl. Phys. Lett. 75, 1036 (1999).
    [CrossRef]
  4. H. Kim, Y. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
    [CrossRef]
  5. H. Kuwata, H. Tamaru, and K. Esumi, Appl. Phys. Lett. 83, 4625 (2003).
    [CrossRef]
  6. H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, and Y. H. Lee, Appl. Phys. Lett. 78, 1174 (2001).
    [CrossRef]
  7. H. M. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, J. Vac. Sci. Technol. B 24, 1909 (2006).
    [CrossRef]
  8. P. Kiesel, F. Renner, M. Kneissi, N. Johnson, and G. Dohler, Phys. Status Solidi A 188, 131 (2001).
    [CrossRef]

2006 (1)

H. M. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, J. Vac. Sci. Technol. B 24, 1909 (2006).
[CrossRef]

2004 (1)

H. Kim, Y. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
[CrossRef]

2003 (2)

H. Kuwata, H. Tamaru, and K. Esumi, Appl. Phys. Lett. 83, 4625 (2003).
[CrossRef]

W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, Adv. Mater. (Weinheim, Ger.) 15, 526 (2003).
[CrossRef]

2001 (3)

H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, and Y. H. Lee, Appl. Phys. Lett. 78, 1174 (2001).
[CrossRef]

P. Kiesel, F. Renner, M. Kneissi, N. Johnson, and G. Dohler, Phys. Status Solidi A 188, 131 (2001).
[CrossRef]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409, 66 (2001).
[CrossRef] [PubMed]

1999 (1)

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, Appl. Phys. Lett. 75, 1036 (1999).
[CrossRef]

Bhat, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, Appl. Phys. Lett. 75, 1036 (1999).
[CrossRef]

Boroditsky, M.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, Appl. Phys. Lett. 75, 1036 (1999).
[CrossRef]

Cho, Y.

H. Kim, Y. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
[CrossRef]

Chu, J. T.

H. M. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, J. Vac. Sci. Technol. B 24, 1909 (2006).
[CrossRef]

Chung, K. S.

H. Kim, Y. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
[CrossRef]

Coccioli, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, Appl. Phys. Lett. 75, 1036 (1999).
[CrossRef]

Cui, Y.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409, 66 (2001).
[CrossRef] [PubMed]

Dohler, G.

P. Kiesel, F. Renner, M. Kneissi, N. Johnson, and G. Dohler, Phys. Status Solidi A 188, 131 (2001).
[CrossRef]

Duan, X.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409, 66 (2001).
[CrossRef] [PubMed]

Esumi, K.

H. Kuwata, H. Tamaru, and K. Esumi, Appl. Phys. Lett. 83, 4625 (2003).
[CrossRef]

Han, I. Y.

H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, and Y. H. Lee, Appl. Phys. Lett. 78, 1174 (2001).
[CrossRef]

Hsueh, T. H.

H. M. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, J. Vac. Sci. Technol. B 24, 1909 (2006).
[CrossRef]

Huang, H. M.

H. M. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, J. Vac. Sci. Technol. B 24, 1909 (2006).
[CrossRef]

Huang, Y.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409, 66 (2001).
[CrossRef] [PubMed]

Hwang, J. K.

H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, and Y. H. Lee, Appl. Phys. Lett. 78, 1174 (2001).
[CrossRef]

Johnson, N.

P. Kiesel, F. Renner, M. Kneissi, N. Johnson, and G. Dohler, Phys. Status Solidi A 188, 131 (2001).
[CrossRef]

Kang, T. W.

H. Kim, Y. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
[CrossRef]

Kiesel, P.

P. Kiesel, F. Renner, M. Kneissi, N. Johnson, and G. Dohler, Phys. Status Solidi A 188, 131 (2001).
[CrossRef]

Kim, D. Y.

H. Kim, Y. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
[CrossRef]

Kim, H.

H. Kim, Y. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
[CrossRef]

Kim, M.

W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, Adv. Mater. (Weinheim, Ger.) 15, 526 (2003).
[CrossRef]

Kim, S.

H. Kim, Y. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
[CrossRef]

Kneissi, M.

P. Kiesel, F. Renner, M. Kneissi, N. Johnson, and G. Dohler, Phys. Status Solidi A 188, 131 (2001).
[CrossRef]

Krauss, T. F.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, Appl. Phys. Lett. 75, 1036 (1999).
[CrossRef]

Kuo, H. C.

H. M. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, J. Vac. Sci. Technol. B 24, 1909 (2006).
[CrossRef]

Kuwata, H.

H. Kuwata, H. Tamaru, and K. Esumi, Appl. Phys. Lett. 83, 4625 (2003).
[CrossRef]

Lee, H.

H. Kim, Y. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
[CrossRef]

Lee, Y. H.

H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, and Y. H. Lee, Appl. Phys. Lett. 78, 1174 (2001).
[CrossRef]

Lieber, C. M.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409, 66 (2001).
[CrossRef] [PubMed]

Ou-Yang, M. C.

H. M. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, J. Vac. Sci. Technol. B 24, 1909 (2006).
[CrossRef]

Park, W. I.

W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, Adv. Mater. (Weinheim, Ger.) 15, 526 (2003).
[CrossRef]

Pennycook, S. J.

W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, Adv. Mater. (Weinheim, Ger.) 15, 526 (2003).
[CrossRef]

Renner, F.

P. Kiesel, F. Renner, M. Kneissi, N. Johnson, and G. Dohler, Phys. Status Solidi A 188, 131 (2001).
[CrossRef]

Ryu, H. Y.

H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, and Y. H. Lee, Appl. Phys. Lett. 78, 1174 (2001).
[CrossRef]

Ryu, S. R.

H. Kim, Y. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
[CrossRef]

Song, D. S.

H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, and Y. H. Lee, Appl. Phys. Lett. 78, 1174 (2001).
[CrossRef]

Tamaru, H.

H. Kuwata, H. Tamaru, and K. Esumi, Appl. Phys. Lett. 83, 4625 (2003).
[CrossRef]

Vrijen, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, Appl. Phys. Lett. 75, 1036 (1999).
[CrossRef]

Wang, J.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409, 66 (2001).
[CrossRef] [PubMed]

Wang, S. C.

H. M. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, J. Vac. Sci. Technol. B 24, 1909 (2006).
[CrossRef]

Yablonovitch, E.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, Appl. Phys. Lett. 75, 1036 (1999).
[CrossRef]

Yi, G. C.

W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, Adv. Mater. (Weinheim, Ger.) 15, 526 (2003).
[CrossRef]

Adv. Mater. (Weinheim, Ger.) (1)

W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, Adv. Mater. (Weinheim, Ger.) 15, 526 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, Appl. Phys. Lett. 75, 1036 (1999).
[CrossRef]

H. Kuwata, H. Tamaru, and K. Esumi, Appl. Phys. Lett. 83, 4625 (2003).
[CrossRef]

H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, and Y. H. Lee, Appl. Phys. Lett. 78, 1174 (2001).
[CrossRef]

J. Vac. Sci. Technol. B (1)

H. M. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, J. Vac. Sci. Technol. B 24, 1909 (2006).
[CrossRef]

Nano Lett. (1)

H. Kim, Y. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
[CrossRef]

Nature (1)

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409, 66 (2001).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

P. Kiesel, F. Renner, M. Kneissi, N. Johnson, and G. Dohler, Phys. Status Solidi A 188, 131 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scanning electron microscope image of randomly arranged 2D nanorod LED array. (b) R total ( θ inc ) of the nanorod array LED for TE (filled circles) and TM (filled squares), and R total of the planar LED for TE (open circles) and TM (open squares). Inset, schematic setup of the total reflectance measurement.

Fig. 2
Fig. 2

Representative plot of φ-dependent PL intensity for both nanorod and planar samples. The results plotted here are for TE light with θ inc = 50 ° .

Fig. 3
Fig. 3

(a) Dependence of P integrated ( θ inc ) and H abs ( θ inc ) on θ inc for TE. (b) ( P integrated ) ( H abs ) as a function of θ inc for TE and TM.

Fig. 4
Fig. 4

Centroid λ and FWHM of the planar and nanorod LED array versus excitation power (milliwatts).

Tables (1)

Tables Icon

Table 1 Angle-Average ( P integrated ( θ inc ) Ha abs ( θ inc ) f.f. ) , P integrated ( θ inc ) , and H abs ( θ inc ) for TE- and TM-Polarized Light

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

PL Intensity ( Emission Area ) η abs η rad η ext .
η abs ( θ inc ) 1 R total ( θ inc ) .
H abs ( θ inc ) η abs ( θ inc ) ( nanorod ) η abs ( θ inc ) ( planar ) .
P integrated ( θ inc ) 80 ° 80 ° I PL ( θ inc , φ ) d φ ( nanorod ) 80 ° 80 ° I PL ( θ inc , φ ) d φ ( planar ) .

Metrics