Abstract

We demonstrate the fabrication of a simple metamaterial-diffraction grating device that both amplifies and converts evanescent waves into propagating ones. This is the most accessible example of such phenomena reported until now (to our knowledge), as it requires few thin film layers, operates in the visible, and can be probed with traditional optics. The metamaterial exhibits amplification of evanescent waves generated from total internal reflection. The device was fabricated over 1cm2 using pulsed-laser deposition and a pattern-replication technique.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, Mikroscop. Anat. 9, 413 (1873).
    [CrossRef]
  2. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  3. D. R. Smith and D. Schurig, Phys. Rev. Lett. 90, 077405 (2003).
    [CrossRef] [PubMed]
  4. N. A. Kuhta, V. A. Podolskiy, and A. L. Efros, Phys. Rev. B 76, 205102 (2007).
    [CrossRef]
  5. A. Salandrino and N. Engheta, Phys. Rev. B 74, 075103 (2006).
    [CrossRef]
  6. S. Tomita, T. Yokoyama, H. Yanagi, B. Wood, J. B. Pendry, M. Fuji, and S. Hayashi, Opt. Express 16, 9942 (2008).
    [CrossRef] [PubMed]
  7. W. Cai, D. A. Genov, and V. M. Shalaev, Phys. Rev. B 72, 193101 (2005).
    [CrossRef]
  8. E. N. Economou, Phys. Rev. 182, 539 (1969).
    [CrossRef]
  9. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
    [CrossRef] [PubMed]
  10. Z. Jacob, L. V. Alekseyev, and E. Narimanov, Opt. Express 14, 8247 (2006).
    [CrossRef] [PubMed]
  11. Y. Zhao, D. Gan, J. Cui, C. Wang, C. Du, and X. Luo, Opt. Express 16, 5697 (2008).
    [CrossRef] [PubMed]
  12. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
    [CrossRef] [PubMed]
  13. Z. Zhang, J. Du, X. Guo, X. Luo., and C. L. Du, J. Appl. Phys. 102, 074301 (2007).
    [CrossRef]
  14. N. Fang, H. Lee, S. Cheng, and X. Zhang, Science 308, 534 (2005).
    [CrossRef] [PubMed]
  15. S. Durant, Z. Liu, J. M. Steele, and X. Zhang, J. Opt. Soc. Am. B 23, 2383 (2006).
    [CrossRef]
  16. Y. Xiong, Z. Liu, S. Cheng, and X. Zhang, Nano Lett. 7, 3360 (2007).
    [CrossRef] [PubMed]
  17. Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, Opt. Express 15, 7095 (2007).
    [CrossRef] [PubMed]
  18. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, Phys. Rev. B 66, 045102 (2002).
    [CrossRef]
  19. J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, J. Am. Chem. Soc. 127, 10096 (2005).
    [CrossRef] [PubMed]
  20. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2000).
  21. C. Wang, Y. Zhao, D. Gan, C. Du, and X. Luo, Opt. Express 16, 4217 (2008).
    [CrossRef] [PubMed]

2008

2007

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef] [PubMed]

Z. Zhang, J. Du, X. Guo, X. Luo., and C. L. Du, J. Appl. Phys. 102, 074301 (2007).
[CrossRef]

Y. Xiong, Z. Liu, S. Cheng, and X. Zhang, Nano Lett. 7, 3360 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, Opt. Express 15, 7095 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef] [PubMed]

N. A. Kuhta, V. A. Podolskiy, and A. L. Efros, Phys. Rev. B 76, 205102 (2007).
[CrossRef]

2006

2005

N. Fang, H. Lee, S. Cheng, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

W. Cai, D. A. Genov, and V. M. Shalaev, Phys. Rev. B 72, 193101 (2005).
[CrossRef]

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, J. Am. Chem. Soc. 127, 10096 (2005).
[CrossRef] [PubMed]

2003

D. R. Smith and D. Schurig, Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

2002

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, Phys. Rev. B 66, 045102 (2002).
[CrossRef]

2000

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

1969

E. N. Economou, Phys. Rev. 182, 539 (1969).
[CrossRef]

1873

E. Abbe, Mikroscop. Anat. 9, 413 (1873).
[CrossRef]

Abbe, E.

E. Abbe, Mikroscop. Anat. 9, 413 (1873).
[CrossRef]

Alekseyev, L. V.

Cai, W.

W. Cai, D. A. Genov, and V. M. Shalaev, Phys. Rev. B 72, 193101 (2005).
[CrossRef]

Cheng, S.

Y. Xiong, Z. Liu, S. Cheng, and X. Zhang, Nano Lett. 7, 3360 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, S. Cheng, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

Cui, J.

Denison, G. M.

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, J. Am. Chem. Soc. 127, 10096 (2005).
[CrossRef] [PubMed]

DeSimone, J. M.

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, J. Am. Chem. Soc. 127, 10096 (2005).
[CrossRef] [PubMed]

Du, C.

Du, C. L.

Z. Zhang, J. Du, X. Guo, X. Luo., and C. L. Du, J. Appl. Phys. 102, 074301 (2007).
[CrossRef]

Du, J.

Z. Zhang, J. Du, X. Guo, X. Luo., and C. L. Du, J. Appl. Phys. 102, 074301 (2007).
[CrossRef]

Durant, S.

Economou, E. N.

E. N. Economou, Phys. Rev. 182, 539 (1969).
[CrossRef]

Efros, A. L.

N. A. Kuhta, V. A. Podolskiy, and A. L. Efros, Phys. Rev. B 76, 205102 (2007).
[CrossRef]

Engheta, N.

A. Salandrino and N. Engheta, Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Euliss, L. E.

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, J. Am. Chem. Soc. 127, 10096 (2005).
[CrossRef] [PubMed]

Exner, A. E.

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, J. Am. Chem. Soc. 127, 10096 (2005).
[CrossRef] [PubMed]

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, S. Cheng, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

Fuji, M.

Gan, D.

Genov, D. A.

W. Cai, D. A. Genov, and V. M. Shalaev, Phys. Rev. B 72, 193101 (2005).
[CrossRef]

Gippius, N. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Guo, X.

Z. Zhang, J. Du, X. Guo, X. Luo., and C. L. Du, J. Appl. Phys. 102, 074301 (2007).
[CrossRef]

Hayashi, S.

Ishihara, T.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Jacob, Z.

Kuhta, N. A.

N. A. Kuhta, V. A. Podolskiy, and A. L. Efros, Phys. Rev. B 76, 205102 (2007).
[CrossRef]

Lee, H.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, Opt. Express 15, 7095 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, S. Cheng, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Cheng, and X. Zhang, Nano Lett. 7, 3360 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, Opt. Express 15, 7095 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef] [PubMed]

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, J. Opt. Soc. Am. B 23, 2383 (2006).
[CrossRef]

Luo, X.

Luo., X.

Z. Zhang, J. Du, X. Guo, X. Luo., and C. L. Du, J. Appl. Phys. 102, 074301 (2007).
[CrossRef]

Maynor, B. W.

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, J. Am. Chem. Soc. 127, 10096 (2005).
[CrossRef] [PubMed]

Muljarov, E. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Narimanov, E.

Pendry, J. B.

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef] [PubMed]

Podolskiy, V. A.

N. A. Kuhta, V. A. Podolskiy, and A. L. Efros, Phys. Rev. B 76, 205102 (2007).
[CrossRef]

Rolland, J. P.

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, J. Am. Chem. Soc. 127, 10096 (2005).
[CrossRef] [PubMed]

Salandrino, A.

A. Salandrino and N. Engheta, Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Schurig, D.

D. R. Smith and D. Schurig, Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

Shalaev, V. M.

W. Cai, D. A. Genov, and V. M. Shalaev, Phys. Rev. B 72, 193101 (2005).
[CrossRef]

Smith, D. R.

D. R. Smith and D. Schurig, Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

Steele, J. M.

Sun, C.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, Opt. Express 15, 7095 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef] [PubMed]

Tikhodeev, S. G.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Tomita, S.

Tretyakov, S.

S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2000).

Wang, C.

Wood, B.

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, Opt. Express 15, 7095 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Cheng, and X. Zhang, Nano Lett. 7, 3360 (2007).
[CrossRef] [PubMed]

Yablonskii, A. L.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Yanagi, H.

Yokoyama, T.

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Cheng, and X. Zhang, Nano Lett. 7, 3360 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, Opt. Express 15, 7095 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef] [PubMed]

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, J. Opt. Soc. Am. B 23, 2383 (2006).
[CrossRef]

N. Fang, H. Lee, S. Cheng, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

Zhang, Z.

Z. Zhang, J. Du, X. Guo, X. Luo., and C. L. Du, J. Appl. Phys. 102, 074301 (2007).
[CrossRef]

Zhao, Y.

J. Am. Chem. Soc.

J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, J. Am. Chem. Soc. 127, 10096 (2005).
[CrossRef] [PubMed]

J. Appl. Phys.

Z. Zhang, J. Du, X. Guo, X. Luo., and C. L. Du, J. Appl. Phys. 102, 074301 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Mikroscop. Anat.

E. Abbe, Mikroscop. Anat. 9, 413 (1873).
[CrossRef]

Nano Lett.

Y. Xiong, Z. Liu, S. Cheng, and X. Zhang, Nano Lett. 7, 3360 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev.

E. N. Economou, Phys. Rev. 182, 539 (1969).
[CrossRef]

Phys. Rev. B

W. Cai, D. A. Genov, and V. M. Shalaev, Phys. Rev. B 72, 193101 (2005).
[CrossRef]

N. A. Kuhta, V. A. Podolskiy, and A. L. Efros, Phys. Rev. B 76, 205102 (2007).
[CrossRef]

A. Salandrino and N. Engheta, Phys. Rev. B 74, 075103 (2006).
[CrossRef]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, Phys. Rev. B 66, 045102 (2002).
[CrossRef]

Phys. Rev. Lett.

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

D. R. Smith and D. Schurig, Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

Science

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, S. Cheng, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

Other

S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Electron micrograph of the metallodielectric and grating structure. Visible are 10 alternating layers of 20 nm Ag and 100 nm Al 2 O 3 on a glass substrate. The PMMA blaze diffraction grating has 830 nm periodicity and 196 nm height. The large overhang is PMMA, resulting from preparing the sample for cross section imaging.

Fig. 2
Fig. 2

(a) Schematic setup to realize amplification and collection of evanescent waves with visible range optics. The incident and collection arms can be rotated to vary the incident k x value and capture all three diffraction orders. (b) Detail of the metamaterial and the grating. In the diagrams P stands for the polarizer, BS is the beamsplitter, PD is photodiode detector, M is the metamaterial, DO is the diffraction order, and IO is index-matching oil.

Fig. 3
Fig. 3

Normalized transmission versus relative k vector for TM incident light. Above, the 1 diffraction order demonstrates conversion of evanescent wavelengths into propagating light. Inset, the dispersion relation of the metamaterial in solid curves, while short and long dashed curves are the k o and 1.5 k o light cones, respectively. The modal wave number at ω = 3.54 × 10 15 s 1 is 0.0142 nm 1 , located in the first branch. Below, the 0 diffraction order shows no propagation for evanescent waves.

Fig. 4
Fig. 4

Normalized transmission versus relative k vector for TE incident light. The 1 and 0 diffraction orders exhibit no evanescent propagation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k x 2 ϵ z + k z 2 ϵ x = k o 2 ,

Metrics