Abstract

BiB3O6 has been found to be simultaneously phase matchable for sum-frequency generation at 0.4627 and 0.6260μm by mixing the outputs of a 0.5321μm pumped parametric oscillator with the fundamental source at 1.0642μm. The simultaneous blue and red light generation is achieved under the temperature-insensitive phase-matching condition, and the relative strength of blue and red light can be controlled by changing the effective nonlinear constants through the azimuth angle. In addition, wide wavelength tuning of the simultaneous phase matching is obtained by the use of a noncollinear geometry, enabling a compact red–green–blue laser system based on the powerful solid-state laser.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, Appl. Phys. Lett. 78, 144 (2001).
    [Crossref]
  2. J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Appl. Phys. Lett. 82, 3159 (2003).
    [Crossref]
  3. X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, Opt. Lett. 33, 408 (2008).
    [Crossref] [PubMed]
  4. R. Wallenstein, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), p. 389.
  5. D. Lee and P. F. Moulton, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), p. 424.
  6. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, Opt. Lett. 29, 1921 (2004).
    [Crossref] [PubMed]
  7. Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, Appl. Phys. Lett. 89, 181101 (2006).
    [Crossref]
  8. M. Robles-Agudo, R. S. Cudney, and L. A. Rios, Opt. Express 14, 10663 (2006).
    [Crossref] [PubMed]
  9. P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, Opt. Lett. 33, 2791 (2008).
    [Crossref] [PubMed]
  10. K. Miyata, N. Umemura, and K. Kato, Opt. Lett. 34, 500 (2009).
    [Crossref] [PubMed]
  11. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Beak, M. D. Levenson, and W. R. Bosenberg, Opt. Lett. 22, 1211 (1997).
    [Crossref] [PubMed]
  12. H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
    [Crossref]
  13. S. P. Velsko, M. Webb, L. Davis, and C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
    [Crossref]
  14. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
    [Crossref]

2009 (1)

2008 (2)

2006 (2)

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, Appl. Phys. Lett. 89, 181101 (2006).
[Crossref]

M. Robles-Agudo, R. S. Cudney, and L. A. Rios, Opt. Express 14, 10663 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (1)

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Appl. Phys. Lett. 82, 3159 (2003).
[Crossref]

2001 (1)

J. Capmany, Appl. Phys. Lett. 78, 144 (2001).
[Crossref]

2000 (1)

H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
[Crossref]

1997 (1)

1991 (1)

S. P. Velsko, M. Webb, L. Davis, and C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[Crossref]

1990 (1)

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[Crossref]

Arisholm, G.

Bohaty, L.

H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
[Crossref]

Bosenberg, W. R.

Brunner, F.

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[Crossref]

Capmany, J.

J. Capmany, Appl. Phys. Lett. 78, 144 (2001).
[Crossref]

Cudney, R. S.

Davis, L.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[Crossref]

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[Crossref]

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[Crossref]

Gao, Z. D.

He, J. L.

X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, Opt. Lett. 33, 408 (2008).
[Crossref] [PubMed]

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Appl. Phys. Lett. 82, 3159 (2003).
[Crossref]

Hellwig, H.

H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
[Crossref]

Hollberg, L.

Hu, X. P.

Huang, C.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[Crossref]

Innerhofer, E.

Ito, H.

Kato, K.

Keller, U.

Kitamura, K.

Kung, A. H.

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, Appl. Phys. Lett. 89, 181101 (2006).
[Crossref]

Kurimura, S.

Lee, D.

D. Lee and P. F. Moulton, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), p. 424.

Leng, H. Y.

Levenson, M. D.

Liao, J.

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Appl. Phys. Lett. 82, 3159 (2003).
[Crossref]

Liebertz, J.

H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
[Crossref]

Liu, H.

X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, Opt. Lett. 33, 408 (2008).
[Crossref] [PubMed]

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Appl. Phys. Lett. 82, 3159 (2003).
[Crossref]

Marchese, S. V.

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[Crossref]

Ming, N. B.

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Appl. Phys. Lett. 82, 3159 (2003).
[Crossref]

Miyata, K.

Moulton, P. F.

D. Lee and P. F. Moulton, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), p. 424.

Paschotta, R.

Pfister, O.

Qin, Y. Q.

Rios, L. A.

Robles-Agudo, M.

Südmeyer, T.

Tu, S. Y.

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, Appl. Phys. Lett. 89, 181101 (2006).
[Crossref]

Umemura, N.

Usami, T.

Van Beak, D. A.

Velsko, S. P.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[Crossref]

Wallenstein, R.

R. Wallenstein, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), p. 389.

Wang, H. T.

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Appl. Phys. Lett. 82, 3159 (2003).
[Crossref]

Wang, J. F.

Wang, X.

Webb, M.

S. P. Velsko, M. Webb, L. Davis, and C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[Crossref]

Wells, J. S.

Xie, Z. D.

Xu, P.

Yan, Z.

Yu, X. Q.

Zhao, G.

Zhao, J. S.

Zhu, S. N.

X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, Opt. Lett. 33, 408 (2008).
[Crossref] [PubMed]

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, Opt. Lett. 33, 2791 (2008).
[Crossref] [PubMed]

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, Appl. Phys. Lett. 89, 181101 (2006).
[Crossref]

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Appl. Phys. Lett. 82, 3159 (2003).
[Crossref]

Zhu, Y. Y.

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Appl. Phys. Lett. 82, 3159 (2003).
[Crossref]

Zink, L.

Appl. Phys. Lett. (3)

J. Capmany, Appl. Phys. Lett. 78, 144 (2001).
[Crossref]

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Appl. Phys. Lett. 82, 3159 (2003).
[Crossref]

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, Appl. Phys. Lett. 89, 181101 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

S. P. Velsko, M. Webb, L. Davis, and C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991).
[Crossref]

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[Crossref]

J. Appl. Phys. (1)

H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Other (2)

R. Wallenstein, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), p. 389.

D. Lee and P. F. Moulton, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), p. 424.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Phase-matching curves for the type-1 (solid curve) and -2 (dashed curve) processes in the x z plane ( Ω z < θ < 90 ° ) of BIBO at 20 ° C . Type-1 SHG, type-1 SFG, and type-2 SFG in this figure refer to the upconversions ω signal ( e ) + ω signal ( e ) ω blue ( o ) , ω F ( e ) + ω signal ( e ) ω blue ( o ) , and ω idler ( o ) + ω F ( e ) ω red ( o ) , respectively, where signal and idler are the outputs of a 0.5321 μ m pumped OPO and the fundamental source (F) is a Nd:YAG laser at 1.0642 μ m , and e and o in the parentheses represent the polarizations parallel and normal to the x z plane, respectively. The circles are the experimental points. The arrows indicate the simultaneous phase-matching points.

Fig. 2
Fig. 2

Temperature derivatives of the external phase-matching angles for type-1 (solid curve) and -2 (dashed curve) processes in the x z plane ( Ω z < θ < 90 ° ) of BIBO. Type-1 SHG, type-1 SFG, and type-2 SFG in this figure refer to the upconversions defined in Fig. 1. The filled and open circles are the experimental points for the type-1 SHG and SFG, respectively. The open squares are the experimental points for the type-2 SFG.

Fig. 3
Fig. 3

Noncollinear angle-tuning curves for simultaneous phase matching between type-1 (solid curve) and -2 (dashed curve) processes in the x z plane ( Ω z < θ < 90 ° ) of BIBO at 20 ° C : (a) type-1 SFG/type-2 SFG configuration; (b) type-1 SHG/type-2 SFG configuration. Type-1 SHG, type-1 SFG, and type-2 SFG in this figure refer to the upconversions defined in Fig. 1. The noncollinear angle γ is defined by the internal angle between phase-matching directions of the fundamental θ F (dotted curve) and the OPO outputs θ OPO (dashed-dotted curve). The circles are the experimental points.

Fig. 4
Fig. 4

Effective nonlinear constants for simultaneous collinear phase matching between the type-1 (solid curve) -2 (dashed curve) SFG processes as a function of the azimuth angle in BIBO. Type-1 and -2 SFGs in this figure refer to the upconversions ω F ( s ) + ω signal ( s ) ω blue ( f ) and ω idler ( f ) + ω F ( s ) ω red ( f ) , where s and f in the parentheses represent the polarizations of slow and fast waves ( n s > n f ) , respectively.

Metrics