Abstract

We analyzed the behavior of the electric field in a focal plane consisting of a solid immersion lens (SIL), an air gap, and a measurement sample for radially polarized illumination in SIL-based near-field optics with an annular aperture. The analysis was based on the Debye diffraction integral and multiple beam interference. For SIL-based near-field optics whose NA is higher than unity, radially polarized light generates a smaller beam spot on the bottom surface of a SIL than circularly polarized light; however, the beam spot on the measurement sample is broadened with a more dominant transverse electric field. By introducing an annular aperture technique, it is possible to decrease the effects of the transverse electric field, and therefore the size of the beam spot on the measurement sample can be small. This analysis could have various applications in near-field optical storage, near-field microscopy, lithography at ultrahigh resolution, and other applications that use SILs for high resolution.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Mansfield and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
    [CrossRef]
  2. I. Ichimura, S. Hayashi, and G. S. Kino, Appl. Opt. 36, 4339 (1997).
    [CrossRef] [PubMed]
  3. K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, Nat. Photonics 2, 311 (2008).
    [CrossRef]
  4. C. J. R. Sheppard and A. Choudhury, Appl. Opt. 43, 4322 (2004).
    [CrossRef] [PubMed]
  5. D. P. Biss and T. G. Brown, Opt. Express 9, 490 (2001).
    [CrossRef] [PubMed]
  6. L. E. Helseth, Opt. Commun. 191, 161 (2001).
    [CrossRef]
  7. D. P. Biss and T. G. Brown, Opt. Lett. 28, 923 (2003).
    [CrossRef] [PubMed]
  8. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
    [CrossRef] [PubMed]
  9. W. C. Kim, Y. J. Yoon, H. Choi, N. C. Park, and Y. P. Park, Opt. Express 16, 13933 (2008).
    [CrossRef] [PubMed]
  10. W. T. Welford, J. Opt. Soc. Am. 50, 749 (1960).
    [CrossRef]
  11. C. Liu and S. H. Park, Opt. Lett. 29, 1742 (2004).
    [CrossRef] [PubMed]
  12. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008).
    [CrossRef]
  13. F. H. Köklü, S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, Opt. Lett. 34, 1261 (2009).
    [CrossRef] [PubMed]
  14. B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
    [CrossRef]
  15. A. S. van de Nes, L. Billy, S. F. Pereira, and J. J. M. Braat, Opt. Express 12, 1281 (2004).
    [CrossRef] [PubMed]
  16. Y. Lu, J. Xie, and H. Ming, Opt. Commun. 215, 251 (2003).
    [CrossRef]

2009

2008

W. C. Kim, Y. J. Yoon, H. Choi, N. C. Park, and Y. P. Park, Opt. Express 16, 13933 (2008).
[CrossRef] [PubMed]

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, Nat. Photonics 2, 311 (2008).
[CrossRef]

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008).
[CrossRef]

2004

2003

D. P. Biss and T. G. Brown, Opt. Lett. 28, 923 (2003).
[CrossRef] [PubMed]

Y. Lu, J. Xie, and H. Ming, Opt. Commun. 215, 251 (2003).
[CrossRef]

2001

D. P. Biss and T. G. Brown, Opt. Express 9, 490 (2001).
[CrossRef] [PubMed]

L. E. Helseth, Opt. Commun. 191, 161 (2001).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

1997

1990

S. M. Mansfield and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
[CrossRef]

1960

1959

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
[CrossRef]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Billy, L.

Biss, D. P.

Braat, J. J. M.

Brown, T. G.

Choi, H.

Chong, C. T.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008).
[CrossRef]

Choudhury, A.

Goldberg, B. B.

Hayashi, S.

Helseth, L. E.

L. E. Helseth, Opt. Commun. 191, 161 (2001).
[CrossRef]

Ichimura, I.

Ippolito, S. B.

Kim, W. C.

Kino, G. S.

I. Ichimura, S. Hayashi, and G. S. Kino, Appl. Opt. 36, 4339 (1997).
[CrossRef] [PubMed]

S. M. Mansfield and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
[CrossRef]

Köklü, F. H.

Liu, C.

Lu, Y.

Y. Lu, J. Xie, and H. Ming, Opt. Commun. 215, 251 (2003).
[CrossRef]

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008).
[CrossRef]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
[CrossRef]

Ming, H.

Y. Lu, J. Xie, and H. Ming, Opt. Commun. 215, 251 (2003).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Park, N. C.

Park, S. H.

Park, Y. P.

Pereira, S. F.

Ramsay, E.

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, Nat. Photonics 2, 311 (2008).
[CrossRef]

Reid, D. T.

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, Nat. Photonics 2, 311 (2008).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
[CrossRef]

Serrels, K. A.

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, Nat. Photonics 2, 311 (2008).
[CrossRef]

Sheppard, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008).
[CrossRef]

Sheppard, C. J. R.

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008).
[CrossRef]

Ünlü, M. S.

van de Nes, A. S.

Wang, H.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008).
[CrossRef]

Warburton, R. J.

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, Nat. Photonics 2, 311 (2008).
[CrossRef]

Welford, W. T.

Wolf, E.

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
[CrossRef]

Xie, J.

Y. Lu, J. Xie, and H. Ming, Opt. Commun. 215, 251 (2003).
[CrossRef]

Yoon, Y. J.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

S. M. Mansfield and G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).
[CrossRef]

J. Opt. Soc. Am.

Nat. Photonics

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, Nat. Photonics 2, 311 (2008).
[CrossRef]

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008).
[CrossRef]

Opt. Commun.

Y. Lu, J. Xie, and H. Ming, Opt. Commun. 215, 251 (2003).
[CrossRef]

L. E. Helseth, Opt. Commun. 191, 161 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. A

B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the optical setup considered in the analysis.

Fig. 2
Fig. 2

Normalized intensity distributions: (a) radially and circularly polarized illuminations with and without a designed annular aperture at z = λ / 8 and z = 0 and (b) radially polarized illumination with a designed annular aperture at z = 0 , for various refractive indices of a sample.

Fig. 3
Fig. 3

Electric field distributions corresponding to entrance pupil radius and FWHM of spots for various k r 1 : (a) and (b) are | E r | and | E z | at z = λ / 8 , (c) and (d) are | E r | and | E z | at z = 0 , and (e) is FWHM of spots.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E i ( r , φ , z ) = n = 1 3 { j R k z 1 k 1 k r n 1 k r n C n 1 , n ( A l + e j k z l z + A l e j k z l z ) k r d k r } ,
C n 1 , n = t n e j φ n ,
A l ± = [ ( g l 0 ± g l 2 ± ) J 1 ( c ) ( g l 0 ± g l 2 ± ) J 1 ( s ) g l 1 ± J 0 ( c ) ] ,

Metrics