Abstract

A fundamental Y branch based on a flexible photonic crystal waveguide is presented. By combining this fundamental Y branch with flexible waveguides, flexible waveguide branches with arbitrary branching angles are constructed. Numerical simulations of these branches indicate that without any structural optimization, near-complete transmission is observed within a wide frequency band. Owing to their unique flexibility, these waveguide branches are expected to be applied to high-density photonic integrated circuits after further research.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. AI-hemyari, F. Doughty, C. D. W. Wilkinson, A. H. Kean, and C. R. Stanley, J. Lightwave Technol. 11, 272 (1993).
    [CrossRef]
  2. H. Hatami-Hanza, P. L. Chu, and M. J. Lederer, IEEE Photon. Technol. Lett. 6, 528 (1994).
    [CrossRef]
  3. J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, Proc. SPIE 3007, 112 (1997).
    [CrossRef]
  4. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, J. Lightwave Technol. 17, 1682 (1999).
    [CrossRef]
  5. S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Mannolatou, and H. A. Haus, J. Opt. Soc. Am. B 18, 162 (2001).
    [CrossRef]
  6. L. H. Frandsen, P. I. Borel, Y. X. Zhuang, A. Harpøth, M. Thorhauge, M. Kristensen, W. Bogaerts, P. Dumon, R. Baets, V. Wiaux, J. Wouters, and S. Beckx, Opt. Lett. 29, 1623 (2004).
    [CrossRef] [PubMed]
  7. J. Zarbakhsh, F. Hagmann, S. F. Mingaleev, K. Busch, and K. Hingerl, Appl. Phys. Lett. 84, 4687 (2004).
    [CrossRef]
  8. Y. Zhang and B. Li, Opt. Express 14, 5723 (2006).
    [CrossRef] [PubMed]
  9. B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, Appl. Phys. Lett. 93, 181107 (2008).
    [CrossRef]
  10. B. Chen, T. Tang, and H. Chen, Opt. Express 17, 5033 (2009).
    [CrossRef] [PubMed]
  11. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  12. S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, Opt. Lett. 27, 1400 (2002).
    [CrossRef]

2009 (1)

2008 (1)

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, Appl. Phys. Lett. 93, 181107 (2008).
[CrossRef]

2006 (1)

2004 (2)

2002 (1)

2001 (1)

1999 (1)

1997 (1)

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, Proc. SPIE 3007, 112 (1997).
[CrossRef]

1994 (1)

H. Hatami-Hanza, P. L. Chu, and M. J. Lederer, IEEE Photon. Technol. Lett. 6, 528 (1994).
[CrossRef]

1993 (1)

K. AI-hemyari, F. Doughty, C. D. W. Wilkinson, A. H. Kean, and C. R. Stanley, J. Lightwave Technol. 11, 272 (1993).
[CrossRef]

Agarwal, A. M.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, Proc. SPIE 3007, 112 (1997).
[CrossRef]

AI-hemyari, K.

K. AI-hemyari, F. Doughty, C. D. W. Wilkinson, A. H. Kean, and C. R. Stanley, J. Lightwave Technol. 11, 272 (1993).
[CrossRef]

Baets, R.

Beckx, S.

Bogaerts, W.

Borel, P. I.

Bur, J.

Busch, K.

J. Zarbakhsh, F. Hagmann, S. F. Mingaleev, K. Busch, and K. Hingerl, Appl. Phys. Lett. 84, 4687 (2004).
[CrossRef]

Chen, B.

B. Chen, T. Tang, and H. Chen, Opt. Express 17, 5033 (2009).
[CrossRef] [PubMed]

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, Appl. Phys. Lett. 93, 181107 (2008).
[CrossRef]

Chen, H.

B. Chen, T. Tang, and H. Chen, Opt. Express 17, 5033 (2009).
[CrossRef] [PubMed]

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, Appl. Phys. Lett. 93, 181107 (2008).
[CrossRef]

Chow, E.

Chu, P. L.

H. Hatami-Hanza, P. L. Chu, and M. J. Lederer, IEEE Photon. Technol. Lett. 6, 528 (1994).
[CrossRef]

Doughty, F.

K. AI-hemyari, F. Doughty, C. D. W. Wilkinson, A. H. Kean, and C. R. Stanley, J. Lightwave Technol. 11, 272 (1993).
[CrossRef]

Dumon, P.

Fan, S.

Foresi, J. S.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, Proc. SPIE 3007, 112 (1997).
[CrossRef]

Frandsen, L. H.

Hagmann, F.

J. Zarbakhsh, F. Hagmann, S. F. Mingaleev, K. Busch, and K. Hingerl, Appl. Phys. Lett. 84, 4687 (2004).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Harpøth, A.

Hatami-Hanza, H.

H. Hatami-Hanza, P. L. Chu, and M. J. Lederer, IEEE Photon. Technol. Lett. 6, 528 (1994).
[CrossRef]

Haus, H. A.

Hingerl, K.

J. Zarbakhsh, F. Hagmann, S. F. Mingaleev, K. Busch, and K. Hingerl, Appl. Phys. Lett. 84, 4687 (2004).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Kean, A. H.

K. AI-hemyari, F. Doughty, C. D. W. Wilkinson, A. H. Kean, and C. R. Stanley, J. Lightwave Technol. 11, 272 (1993).
[CrossRef]

Kimerling, L. C.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, Proc. SPIE 3007, 112 (1997).
[CrossRef]

Kristensen, M.

Lederer, M. J.

H. Hatami-Hanza, P. L. Chu, and M. J. Lederer, IEEE Photon. Technol. Lett. 6, 528 (1994).
[CrossRef]

Li, B.

Liao, L.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, Proc. SPIE 3007, 112 (1997).
[CrossRef]

Lim, D. R.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, Proc. SPIE 3007, 112 (1997).
[CrossRef]

Lin, S. Y.

Liu, Z.

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, Appl. Phys. Lett. 93, 181107 (2008).
[CrossRef]

Mannolatou, C.

Manolatou, C.

Mingaleev, S. F.

J. Zarbakhsh, F. Hagmann, S. F. Mingaleev, K. Busch, and K. Hingerl, Appl. Phys. Lett. 84, 4687 (2004).
[CrossRef]

Stanley, C. R.

K. AI-hemyari, F. Doughty, C. D. W. Wilkinson, A. H. Kean, and C. R. Stanley, J. Lightwave Technol. 11, 272 (1993).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Tang, T.

B. Chen, T. Tang, and H. Chen, Opt. Express 17, 5033 (2009).
[CrossRef] [PubMed]

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, Appl. Phys. Lett. 93, 181107 (2008).
[CrossRef]

Thorhauge, M.

Villeneuve, P. R.

Wang, Z.

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, Appl. Phys. Lett. 93, 181107 (2008).
[CrossRef]

Wiaux, V.

Wilkinson, C. D. W.

K. AI-hemyari, F. Doughty, C. D. W. Wilkinson, A. H. Kean, and C. R. Stanley, J. Lightwave Technol. 11, 272 (1993).
[CrossRef]

Wouters, J.

Zarbakhsh, J.

J. Zarbakhsh, F. Hagmann, S. F. Mingaleev, K. Busch, and K. Hingerl, Appl. Phys. Lett. 84, 4687 (2004).
[CrossRef]

Zhang, Y.

Zhuang, Y. X.

Appl. Phys. Lett. (2)

J. Zarbakhsh, F. Hagmann, S. F. Mingaleev, K. Busch, and K. Hingerl, Appl. Phys. Lett. 84, 4687 (2004).
[CrossRef]

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, Appl. Phys. Lett. 93, 181107 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Hatami-Hanza, P. L. Chu, and M. J. Lederer, IEEE Photon. Technol. Lett. 6, 528 (1994).
[CrossRef]

J. Lightwave Technol. (2)

K. AI-hemyari, F. Doughty, C. D. W. Wilkinson, A. H. Kean, and C. R. Stanley, J. Lightwave Technol. 11, 272 (1993).
[CrossRef]

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, J. Lightwave Technol. 17, 1682 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (1)

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, Proc. SPIE 3007, 112 (1997).
[CrossRef]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic drawing of a T-type flexible waveguide branch consisting of a flexible waveguide [inset (b)] and a fundamental flexible waveguide Y branch [inset (a)]. a denotes the lattice constant of the one-dimensional photonic crystal; n 1 = 1.6 , n 2 = 4.6 , n 0 = 1 , h 1 = 0.75 a , h 2 = 0.25 a , and h 0 = 0.75 a ; S and θ denote the cavity area and the branching angle of the fundamental Y branch, respectively.

Fig. 2
Fig. 2

(a) Cavity areas and (b) branching angles of the fundamental Y branches, (c) frequency corresponding to maximum transmittance, (d) relative bandwidth of high transmittance band for the T branches.

Fig. 3
Fig. 3

(a) Transmittance spectra, reflectivity spectrum, and loss spectrum of the T-type flexible waveguide branch with R 1 = 24 a and R 3 = 13 a . (b) Distributions of H y at normalized frequency 0.252 [ c a ] in the T branch with R 1 = 24 a and R 3 = 13 a .

Fig. 4
Fig. 4

Schematic drawings of flexible waveguide branches consisting of a fundamental Y branch and flexible waveguides. According to relative direction between transmission light at two output ports and incident light at the input port, those waveguide branches can be classified into (a) double-front type, (b) double-back type, (c) back-right type, and (d) front-right type.

Metrics