Abstract

We report all-solid bandgap-guiding fibers formed by pumping molten tellurite glass into silica–air photonic crystal fiber at high pressure. The spectral positions of the guidance bands agree well with multipole simulations and bandgap calculations. The micrometer-diameter tellurite strands are found to contain microheterogeneities (most probably originating from devitrification), which increase the fiber attenuation, although no evidence of crystallization is seen in the bulk tellurite glass. The technique offers a potential route to employing difficult-to-handle glasses, or glasses unsuitable for fiber drawing, in fiber-based amplifiers, modulators, filters, and nonlinear devices.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, J. Lightwave Technol. 24, 4729 (2006).
    [CrossRef]
  2. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St. J. Russell, Opt. Express 13, 309 (2005).
    [CrossRef] [PubMed]
  3. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, Opt. Express 14, 5688 (2006).
    [CrossRef] [PubMed]
  4. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, Opt. Lett. 29, 2369 (2004).
    [CrossRef] [PubMed]
  5. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
    [CrossRef]
  6. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St, Phys. Rev. B 77, 033417 (2008).
    [CrossRef]
  7. H. K. Tyagi, M. A. Schmidt, L. P. Sempere, and P. St. J. Russell, Opt. Express 16, 17227 (2008).
    [CrossRef] [PubMed]
  8. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, J. Opt. Soc. Am. B 19, 2322 (2002).
    [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2007).
  10. A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, J. Appl. Phys. 83, 3986 (1998).
    [CrossRef]
  11. T. A. Birks, G. J. Pearce, and D. M. Bird, Opt. Express 14, 9483 (2006).
    [CrossRef] [PubMed]

2008 (3)

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St, Phys. Rev. B 77, 033417 (2008).
[CrossRef]

H. K. Tyagi, M. A. Schmidt, L. P. Sempere, and P. St. J. Russell, Opt. Express 16, 17227 (2008).
[CrossRef] [PubMed]

2006 (3)

2005 (1)

2004 (1)

2002 (1)

1998 (1)

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, J. Appl. Phys. 83, 3986 (1998).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2007).

Argyros, A.

Bird, D. M.

Birks, T. A.

Botten, L. C.

Cordeiro, C. M. B.

de Sterke, C. M.

George, A. K.

Hedley, T. D.

Hirao, K.

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, J. Appl. Phys. 83, 3986 (1998).
[CrossRef]

Knight, J. C.

Kuhlmey, B. T.

Lee, H. W.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Leon-Saval, S. G.

Luan, F.

Maystre, D.

McPhedran, R. C.

Narazaki, A.

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, J. Appl. Phys. 83, 3986 (1998).
[CrossRef]

Pearce, G. J.

Poulton, C. G.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St, Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Prill Sempere, L. N.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St, Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Renversez, G.

Russell, P. St. J.

Schmidt, M. A.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St, Phys. Rev. B 77, 033417 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

H. K. Tyagi, M. A. Schmidt, L. P. Sempere, and P. St. J. Russell, Opt. Express 16, 17227 (2008).
[CrossRef] [PubMed]

Sempere, L. P.

H. K. Tyagi, M. A. Schmidt, L. P. Sempere, and P. St. J. Russell, Opt. Express 16, 17227 (2008).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Soga, N.

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, J. Appl. Phys. 83, 3986 (1998).
[CrossRef]

St, P.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St, Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Tanaka, K.

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, J. Appl. Phys. 83, 3986 (1998).
[CrossRef]

Tyagi, H. K.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St, Phys. Rev. B 77, 033417 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

H. K. Tyagi, M. A. Schmidt, L. P. Sempere, and P. St. J. Russell, Opt. Express 16, 17227 (2008).
[CrossRef] [PubMed]

Wang, A.

White, T. P.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SEM of the cleaved end face of a tellurite-filled PCF ( d = 1.3 μ m , Λ = 7.7 μ m ) . (a) Image of the entire microstructure. Closeup of (b) a completely filled hole and (c) a cleaved-through hollow inclusion.

Fig. 2
Fig. 2

Loss spectrum of the fundamental core mode in the Te-PCF depicted in Fig. 1: (a) experiment, (b) simulation. No transmitted light could be detected in the white bands, where theory predicts extremely high attenuation. (c) Material attenuation of the tellurite glass. The dots indicate the attenuation calculated values from cut-back measurements of the filled PCF. The solid black curves represent the attenuation of the sandwiched test sample (upper) and the absorption of this compound tellurite glass when it is not crystallized (lower).

Fig. 3
Fig. 3

Results of numerical modeling of the core mode for the structure in Fig. 1: (a) real part of the core mode index, minus the silica index, plotted against wavelength (solid black curve). The gray shaded areas represent passbands in the cladding (dark gray: m = 0 , light gray: m = 1 ). The LP m n mode orders are given above the plot. (b) Axial Poynting vector distributions in the vicinity of the strong 800 nm anticrossing (A, 740; B, 800; C, 800; D, 870 nm).

Metrics