Abstract

Radially polarized ultrafast laser beams are used in the fabrication of three-dimensional photonic crystals with the two-photon polymerization technique in organic–inorganic hybrid materials. It has been found that when a radially polarized beam is employed, the lateral size of the fabricated polymer rods is decreased by 27.5% from 138 to 100 nm under a threshold fabrication condition, leading to a 17.35% reduction in the filling ratio of the photonic crystal. A comparison of the stop gaps between radially polarized and linearly polarized beam illumination shows a higher suppression ratio in transmission and a wider wavelength range in the former case owing to the favorable tuning of the filling ratio of the three-dimensional photonic crystals.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Y. S. Yew and C. J. R. Sheppard, Opt. Commun. 275, 453 (2007).
    [CrossRef]
  2. Y. Kozawa and S. Sato, J. Opt. Soc. Am. B 25, 175 (2008).
    [CrossRef]
  3. K. J. Moh, X. C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, Opt. Express 16, 20734 (2008).
    [CrossRef] [PubMed]
  4. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Opt. Lett. 33, 122 (2008).
    [CrossRef] [PubMed]
  5. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nature Photon. 2, 501 (2008).
    [CrossRef]
  6. N. M. Mojarad and M. Agio, Opt. Express 17, 117 (2009).
    [CrossRef] [PubMed]
  7. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  8. M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
    [CrossRef]
  9. B. Jia, X. Gan, and M. Gu, Appl. Phys. Lett. 86, 131110 (2005).
    [CrossRef]
  10. G. M. Lerman and U. Levy, Opt. Express 16, 4567 (2008).
    [CrossRef] [PubMed]
  11. Q. Zhan, Opt. Express 12, 3377 (2004).
    [CrossRef] [PubMed]
  12. M. Fridman, G. MacHavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
    [CrossRef]
  13. H. Kawauchi, Y. Kozawa, and S. Sato, Opt. Lett. 33, 1984 (2008).
    [CrossRef] [PubMed]
  14. B. Jia, X. Gan, and M. Gu, Opt. Express 13, 6821 (2005).
    [CrossRef] [PubMed]
  15. K. C. Toussaint, Jr., S. Park, J. E. Jureller, and N. F. Scherer, Opt. Lett. 30, 2846 (2005).
    [CrossRef] [PubMed]
  16. H. Kawauchi, Y. Kozawa, S. Sato, T. Sato, and S. Kawakami, Opt. Lett. 33, 399 (2008).
    [CrossRef] [PubMed]
  17. M. Stalder and M. Schadt, Opt. Lett. 21, 1948 (1996).
    [CrossRef] [PubMed]
  18. S. Wu, J. Serbin, and M. Gu, J. Photochem. Photobiol., A 181, 1 (2006).
    [CrossRef]
  19. J. Serbin and M. Gu, Adv. Mater. 18, 221 (2006).
    [CrossRef]
  20. M. Straub and M. Gu, Opt. Lett. 27, 1824 (2002).
    [CrossRef]
  21. B. Jia, J. Li, and M. Gu, Aust. J. Chem. 60, 484 (2007).
    [CrossRef]
  22. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).
  23. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frhlich, and M. Popall, Opt. Lett. 28, 301 (2003).
    [CrossRef] [PubMed]
  24. S. G. Johnson and J. D. Joannopoulos, MIT Photonic Bands Software, http://ab-initio.mit.edu/mpb.

2009

2008

2007

B. Jia, J. Li, and M. Gu, Aust. J. Chem. 60, 484 (2007).
[CrossRef]

E. Y. S. Yew and C. J. R. Sheppard, Opt. Commun. 275, 453 (2007).
[CrossRef]

2006

S. Wu, J. Serbin, and M. Gu, J. Photochem. Photobiol., A 181, 1 (2006).
[CrossRef]

J. Serbin and M. Gu, Adv. Mater. 18, 221 (2006).
[CrossRef]

2005

2004

Q. Zhan, Opt. Express 12, 3377 (2004).
[CrossRef] [PubMed]

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

2003

2002

1996

Agio, M.

Bu, J.

Chichkov, B. N.

Chon, J. W. M.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Chong, C. T.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nature Photon. 2, 501 (2008).
[CrossRef]

Cronauer, C.

Davidson, N.

M. Fridman, G. MacHavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Domann, G.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Egbert, A.

Frhlich, L.

Fridman, M.

M. Fridman, G. MacHavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Friesem, A. A.

M. Fridman, G. MacHavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Gan, X.

B. Jia, X. Gan, and M. Gu, Opt. Express 13, 6821 (2005).
[CrossRef] [PubMed]

B. Jia, X. Gan, and M. Gu, Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Gao, B. Z.

Gu, M.

B. Jia, J. Li, and M. Gu, Aust. J. Chem. 60, 484 (2007).
[CrossRef]

J. Serbin and M. Gu, Adv. Mater. 18, 221 (2006).
[CrossRef]

S. Wu, J. Serbin, and M. Gu, J. Photochem. Photobiol., A 181, 1 (2006).
[CrossRef]

B. Jia, X. Gan, and M. Gu, Opt. Express 13, 6821 (2005).
[CrossRef] [PubMed]

B. Jia, X. Gan, and M. Gu, Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

M. Straub and M. Gu, Opt. Lett. 27, 1824 (2002).
[CrossRef]

M. Gu, Advanced Optical Imaging Theory (Springer, 2000).

Haumonte, J. B.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Heckenberg, N. R.

Houbertz, R.

Jia, B.

B. Jia, J. Li, and M. Gu, Aust. J. Chem. 60, 484 (2007).
[CrossRef]

B. Jia, X. Gan, and M. Gu, Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

B. Jia, X. Gan, and M. Gu, Opt. Express 13, 6821 (2005).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, MIT Photonic Bands Software, http://ab-initio.mit.edu/mpb.

Johnson, S. G.

S. G. Johnson and J. D. Joannopoulos, MIT Photonic Bands Software, http://ab-initio.mit.edu/mpb.

Jureller, J. E.

Kawakami, S.

Kawauchi, H.

Kozawa, Y.

Lerman, G. M.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Levy, U.

Li, J.

B. Jia, J. Li, and M. Gu, Aust. J. Chem. 60, 484 (2007).
[CrossRef]

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nature Photon. 2, 501 (2008).
[CrossRef]

MacHavariani, G.

M. Fridman, G. MacHavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Micheau, Y.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Moh, K. J.

Mojarad, N. M.

Nieminen, T. A.

Ostendorf, A.

Park, S.

Popall, M.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

Sato, S.

Sato, T.

Schadt, M.

Scherer, N. F.

Schulz, J.

Serbin, J.

Sheppard, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nature Photon. 2, 501 (2008).
[CrossRef]

Sheppard, C. J. R.

E. Y. S. Yew and C. J. R. Sheppard, Opt. Commun. 275, 453 (2007).
[CrossRef]

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nature Photon. 2, 501 (2008).
[CrossRef]

Stalder, M.

Straub, M.

Toussaint, K. C.

Wang, H.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nature Photon. 2, 501 (2008).
[CrossRef]

Wu, S.

S. Wu, J. Serbin, and M. Gu, J. Photochem. Photobiol., A 181, 1 (2006).
[CrossRef]

Yew, E. Y. S.

E. Y. S. Yew and C. J. R. Sheppard, Opt. Commun. 275, 453 (2007).
[CrossRef]

Yuan, X. C.

Zhan, Q.

Zhu, S. W.

Adv. Mater.

J. Serbin and M. Gu, Adv. Mater. 18, 221 (2006).
[CrossRef]

Appl. Phys. Lett.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

B. Jia, X. Gan, and M. Gu, Appl. Phys. Lett. 86, 131110 (2005).
[CrossRef]

M. Fridman, G. MacHavariani, N. Davidson, and A. A. Friesem, Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Aust. J. Chem.

B. Jia, J. Li, and M. Gu, Aust. J. Chem. 60, 484 (2007).
[CrossRef]

J. Opt. Soc. Am. B

J. Photochem. Photobiol., A

S. Wu, J. Serbin, and M. Gu, J. Photochem. Photobiol., A 181, 1 (2006).
[CrossRef]

Nature Photon.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nature Photon. 2, 501 (2008).
[CrossRef]

Opt. Commun.

E. Y. S. Yew and C. J. R. Sheppard, Opt. Commun. 275, 453 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Other

M. Gu, Advanced Optical Imaging Theory (Springer, 2000).

S. G. Johnson and J. D. Joannopoulos, MIT Photonic Bands Software, http://ab-initio.mit.edu/mpb.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simulated profiles of (a) a radially polarized beam and its (b) horizontal and (c) vertical polarization components before being focused by the fabrication objective. (d)–(f) Experimentally obtained profiles corresponding to (a)–(c), respectively. (d) The polarization ratio of the radially polarized beam in different polarization directions.

Fig. 2
Fig. 2

Calculated two-photon intensity distributions along (a),(b) the transverse and (c),(d) the axial directions in the focal region of an objective with NA = 1.4 through the coverglass ( n 1 = 1.515 ) and Ormocer ( n = 1.47 ) interface under (a),(c) linearly polarized beam illumination and (b),(d) radially polarized beam illumination. (e) The cross section comparison of the focal spots along the X and the Z directions.

Fig. 3
Fig. 3

Predicted (solid curve) and measured (dots and squares) (a) voxel diameter and (b) voxel length as functions of the laser power for a constant exposure time of t = 5   ms .

Fig. 4
Fig. 4

(a) Schematic of the woodpile PC. (b), (c) SEM images of PCs fabricated with (b) the linearly and (c) radially polarized beam illumination. Scale bar: 900 nm. (d) Calculated band diagrams in the Γ - X direction of structures in (b) and (c). (e) FTIR measured transmission spectra (solid curves) of PCs in (b) and (c) and another PC with different lattice constant ( d = 0.95 μ m ) fabricated with a radially polarized beam.

Metrics