Abstract

Radially polarized ultrafast laser beams are used in the fabrication of three-dimensional photonic crystals with the two-photon polymerization technique in organic-inorganic hybrid materials. It has been found that when a radially polarized beam is employed, the lateral size of the fabricated polymer rods is decreased by 27.5% from 138 to 100 nm under a threshold fabrication condition, leading to a 17.35% reduction in the filling ratio of the photonic crystal. A comparison of the stop gaps between radially polarized and linearly polarized beam illumination shows a higher suppression ratio in transmission and a wider wavelength range in the former case owing to the favorable tuning of the filling ratio of the three-dimensional photonic crystals.

© 2009 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription